

المملكة المغربية وزارة التربية الوطنية الأكاديمية الجهوية للتربية والتكوين للجهة الشرقية النيابة الإقليمية - وجدة -

<u>جمىع دروس الأولى باك علوم تحريبية</u> <u>مع تمارين</u> <u>وأمثلة وأنشطة محلولة</u>

إعداد: نجيب عثماني

(أستاذ الثانوي تأهيلي الدرجة الممتازة)

السنة الدراسية: 2017/2016

« c'est en forgeant que l'on devient forgeron » dit un proverbe. c'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

ص 1 http:// xyzmath.e-monsite.com

أكاديمية الجهة الشرقية نيابة وجدة

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مذكرة رقم/1

مذكرة رقم 1 في درس المنطق 8 س

الأهداف القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
ـ ينبغي تقريب العبارات والقوانين المنطقية	- التمكن من استعمال الاستدلال المناسب حسب	_ العبارات؛ العمليات على العبارات؛ الدوال
وطرائق الاستدلال انطلاقا من أنشطة متنوعة	الوضعية المدروسة؛	العبارية؛ المكممات،
ومختلفة مستقاة من الرصيد المعرفي للتلميذ	_ التمكن من صياغة براهين واستدلالات	_ الاستدلالات الرياضية: الاستدلال بالخلف؛
ومن وضعيات رياضية سبق له التعامل	رياضية واضحة وسليمة منطقيا.	الاستدلال بمضاد العكس؛ الاستدلال بفصل
معها؛	50 SE SES COS W 1889	الحالات؛ الاستدلال بالتكافؤ؛ الاستدلال بالترجع.
_ ينبغي تجنب البناء النظري والإفراط في		
استعمال جداول الحقيقة؟		
_ إن درس المنطق لا ينتهي بانتهاء هذا		
الفصل بل ينبغي استثمار نتائجه، كلما سنحت		
الفرصة لذلك، بمختلف فصول المقرر		
اللاحقة.		

1. أنقل الجدول التالي ثم ضع العلامة "X" في الخانة المناسبة .

خاطئ	صحيح	
χ		كل زوجي قابل للقسمة على 4
	Х	مجموع عددين فرديين هو عدد زوجي
Х		$\sqrt{2} \in \mathbb{Q}$
	Х	اذا كان n^2 عددا فرديا فان n عدد فردي
χ		$\mathbb R$ المعادلة : $x^2=-1$ تقبل حلا في
Х		جميع المستقيمات المتعامدة في الفضاء متقاطعة
	Х	114516مضاعف للعدد4
Х		$\left(\left(-2\right) ^{2}=-4\right)$

 هل توجد من بين الجمل الواردة في الجدول أعلاه جمل صحيحة و خاطئة في أن واحد

الجواب: كل النصوص الرياضية اما صحيحة و إما خاطئة وتسمى

[العبارات و العمليات على العبارات

العبارات

نسمي عبارة كل نص رياضي يحمل معنى يكون إما صحيحا و إما

r أو q أو p نرمز عادة لعبارة بأحد الرموز

غالبا ما نعبر عن حقيقة عبارة بجدول يسمى جدول حقيقة عبارة :

الرمز 1 يعنى أن العبارة p صحيحة و الرمز p يعنى أن العبارة p خاطئة

1.2. العمليات على العبارات

p " عدد زوجى p عدد نعتبر العبارة :

p ما قيمة حقيقة العبارة p حدد نفي العبارة p نرمز لها ب

ما قيمة حقيقة العبارة \overline{p} إذن نفي عبارة p هو كل عبارة تكون

صحیحة إذا كانت p خاطئة و تكون خاطئة إذا کانت p صحیحة

-p أو p نرمز لنفى العبارة p بالرمز

حدد العبارة النافية و قيمة حقيقة كل عبارة من العبارات الأتية:

- $p ((-2)^2 = 4)$
- $q \quad \sqrt{2} \in \mathbb{Q} \quad \bullet$

 \overline{p} : $\left((-2)^2 \neq 4\right)$: عبارة صحيحة p عبارة صحيحة

 $\overline{q} \,:\, \left(\sqrt{2}
otin \mathbb{Q}
ight) \,:\,$ عبارة خاطئة q

b. عطف عبارتين

عطف عبارتین p و p هو العبارة التي نرمز لها بالرمز q:p و p والتي تكون صحيحة فقط ا إذا كانت العبارتان p و p صحيحتين معا

جدول حقيقة العطف المنطقي

أمثلة: حدد قيمة حقيقة العبار آت الآتية:

 $B'' \quad \sqrt{2} \in Q \quad \Im(\sqrt{3} + \sqrt{2} > 3) \quad A''(\sqrt{3} \ge 1) \quad \Im((-2)^2 > 3)$

0

1 0

q le p

0

الأجوية: А عبارة صحيحة: لأنها مكونة من عبارتين صحيحتين A عبارة صحيحة : لأنها مكونة من عبارتين صحيحتين

عبارة خاطئة : لأنها عطف عبارة صحيحة مع خاطئة B

c. فصل عبارتين $(p \mid q)$ و $p \mid q$ هو العبارة التي نرمز لها بالرمز $p \mid q$ أو

والتى تكون خاطئة فقط إذا كانت العبارتان p و

م خاطئتين معا.

أمثلة: حدد قيمة الحقيقة و العبارة النافية لكل عبارة من العبارات الآتية:

 $A" \left(\sqrt{4} = 2\right) \text{ if } \left(\frac{1}{2} \in \mathbb{N}\right)$

 $B''((-2)^2 > 3)$ أو $(3)^2 = 3$

 $C''(\sqrt{2} \le 1) \Im(\pi = 3.14)$ "

الأجوبة: A عبارة صحيحة : لأن $\sqrt{2}=\sqrt{4}$ عبارة صحيحة

عبارة صحيحة : لأنها فصل عبارتين صحيحتين B

0

عبارة خاطئة: لأنها فصل عبارتين خاطئتين حدد قيمة حقيقة ال

 $P \mid q \mid (p \Rightarrow q)$

1

0

 \overline{A} " $\left(\sqrt{4} \neq 2\right)$ $\int \left(\frac{1}{2} \notin \mathbb{N}\right)$ "

 \overline{B} " ((-2) $^2 \le 3$) " ((3)

 \overline{C} " $(\sqrt{2} > 1)$ $\int_{0}^{1} (\pi \neq 3.14)$ "

d. استلزام عبارتین :استلزام عبارتین p و p هو العبارة التي نرمز $p \Rightarrow q$ والتي تكون خاطئة فقط ادا كانت p

صحيحة و q خاطئة

ملاحظات

" $p \Rightarrow q$ العبارة $p \Rightarrow q$ تقرأ $p \Rightarrow q$ تستلزم p " أو " ادا كانت p فان p "

العبارة $(q \Rightarrow p)$ سمى الاستلزام العكسي $(p \Rightarrow q)$ للاستلزام العكسي

p للبرهان أن العبارة : $(p \Rightarrow q)$ صحيحة نفترض أن العبارة p صحيحة و نبين أن العبارة p صحيحة

مثال: حدد قيمة حقيقة كل عبارة من العبارات الأتية:

A" عدد فردي $(0,1 \in \mathbb{N})$ "

 $B" n > 4 \implies n > 2"$

الأجوبة: A عبارة صحيحة و B عبارة صحيحة نشاط: أتمم ملأ الجدول التالي :

p	q	$\frac{-}{p}$	$rac{\overline{p}}{p}$ أو	$(p \Rightarrow q)$
1	1			
1	0			
0	1			
0	0			

نتيجة : العبارتان $(p\Rightarrow q)$ و pأو q متكافئتان مثال2:حدد نفى العبارة الآتية :

 $A" x^2 = 9 \Rightarrow x = 3 \Rightarrow x = -3"$

e. تكافؤ عبارتين

تكافؤ عبارتين p و p هو العبارة التي نرمز لها بالرمز :

و التي تكون صحيحة فقط إذا $(p \Leftrightarrow q)$ كانت العبارتان

p و p صحيحتين معا أو خاطئتين معا. العبارة : $(p \Leftrightarrow q)$ تقرأ : " p تكافئ p

 $p = (p \Leftrightarrow q)$. The section $p \Leftrightarrow q$

أمثلة: عبد قيمة حقيقة كل عبارة من العبارات الآتية:

 $\left(\sqrt{3} \ge 1\right) \iff \left(\left(-2\right)^2 = 4\right)$

جدول حقيقة التكافؤ $-1\in\mathbb{N}$ \Leftrightarrow $\left(\sqrt{5}\geq 3
ight)$

منطقي

خاصية : العبارتان $(p\Leftrightarrow q)$ و $(q\Rightarrow p)$ و مكافئتان

الدالة العبارية و المكممات.

 $(x \in \mathbb{R}); x^2 - x \ge 0$: نشاط1: نعتبر التعبير التالي

- x=2 حدد قيمة حقيقة التعبير من أجل
- $x = \frac{1}{2}$ حدد قيمة حقيقة التعبير من أجل •

- حدد قيمة حقيقة التعبير من أجل x=-1 الأجوبة : من أجل x=2 نجد : $0 \ge 2$ ومنه نحصل على عبارة صحيحة من أجل x=2 نجد : x=2 ومنه نحصل على عبارة خاطئة من أجل x=2 نجد : x=2
- من أجل $x = \frac{1}{2}$ نجد : $0 \le \frac{1}{4} \ge 0$ ومنه نحصل على عبارة خاطئة $x = \frac{1}{2}$ من أجل x = -1 نجد : $0 \le 2$ ومنه نحصل على عبارة صحيحة
- من اجل x = -1 نجد : $0 \ge 2$ ومنه نحصل على عبارة صحيحة إذن التعبير : $(x \in R); x^2 x \ge 0$ يصبح صحيحا من أجل بعض قيم x من \mathbb{R} خاطئا من أجل بعض قيم x
- نقول أننا أمام دالة عبارية تحتوي على متغير x ينتمي إلى المجموعة \mathbb{R}
- نكتب : $x = \mathbb{R}/x^2 x \geq 0$ ونقرأ يوجد $x = \mathbb{R}/x^2 x \geq 0$ بحيث $x^2 x \geq 0$

 $(n \in \mathbb{N}); n^2 \ge 0$: نعتبر التعبير التالي

- n=2 من أجل عنوة التعبير من أجل •
- هل توجد قيم ل: n لا تحقق التعبير السابق؟

الأجوبة : من أجل n=2 نحصل : على عبارة صحيحة n نلاحظ أننا نحصل على عبارة صحيحة مهما تكن قيمة المتغير n

 $\forall n \in \mathbb{N}/n^2 \geq 0$ نکتب : نکتب

1) الدالة العبارية

 $\frac{1}{2}$ نسمي دالة عبارية كل نص رياضي يحتوي على متغير (أو عدة متغيرات) ينتمي إلى مجموعة معلومة E حيث

تصبح عبارة كلما عوضنا المتغير بعنصر من E ونرمز عادة لدالة عبارية بالرمز أو B(x) أو A(x;y)

2) العبارات المكممة

 $\exists x \in E, A(x)$ " نطلاقا من الدالة العبارية A(x) نكون العبارة العبارية x لأقل x ونقرأ: " يوجد على الأقل x

" وتكون العبارة "A(x) من E من العبارة

صحيحة إذا وجد على الأقل x من $\exists x \in E$, A(x)

A(x) الخاصية

 $\forall x \in E\,, A\!\left(x\right)$ " نطلاقا من الدالة العبارية $A\!\left(x\right)$ نكون العبارة " $A\!\left(x\right)$ نكون العبارة " ونقرأ : " مهما يكن x من x لدينا

وتكون العبارة " $\forall x \in E, A(x)$ " صحيحة إذا كانت جميع

تمرين1: حدد قيمة حقيقة كل عبارة من العبارات الآتية :

- $"\forall x \in \mathbb{R} / x^2 > 0" \qquad .1$
- " $\exists x \in \mathbb{R}, x^2 2 = 0$ "

A(x) عناصر E تحقق الخاصية

- " $\exists x \in \mathbb{R}, x^2 + 1 = 0 \iff 3$ 3.
 - $(2 < \sqrt{3}) \Longrightarrow \forall n \in \mathbb{N} / \frac{n}{2} \in \mathbb{N}$
 - $(\forall x \in \mathbb{R}); -1 \le \cos x \le 1$
 - $(\forall n \in \mathbb{N}); (\exists m \in \mathbb{N}): n < m$.6
 - $(\exists n \in \mathbb{N})$ عدد زوجي 2n+1 .7
 - $(\forall n \in \mathbb{N}); \sqrt{n} \in \mathbb{N}$.8
 - $(\forall x \in \mathbb{R}); (\exists y \in \mathbb{R}): y x > 0$.9
 - $(\exists! x \in \mathbb{R}); 2x + 4 = 0.10$
 - $(\exists! x \in \mathbb{R}); x^2 = 2.11$

 $(p \Leftrightarrow q)$

0

0

0

1

```
الاستدلال بالمثال المضاد:
مثال: بين العبارة التالية خاطئة مع تعليل الجواب:
                                                      P\left(\forall x \in \mathbb{R}^*\right); x + \frac{1}{x} \ge 2 "
 الجواب : نعتبر p: -2 + \frac{1}{-2} = -\frac{5}{2} < 2 الدينا x = -2 الذن : الجواب
                            تمرين5:بين العبارة التالية خاطئة مع تعليل الجواب:
            p " \forall x \in ]0;1[ y \in ]0;1[ , 0 < \frac{x+y}{xy(1-xy)} < 1 "
  \frac{2^{\frac{7}{2}}}{\frac{1}{4}\left(1-\frac{1}{4}\right)} = \frac{1}{\frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{12}{3} > 1: الجواب : نعتبر y = \frac{1}{2} و y = \frac{1}{2} و y = \frac{1}{2} الجواب : نعتبر
                                                                         اذن: p خاطئة
                                           2. الاستدلال بالاستلزام المضاد للعكس
لكي نبرهن أن الاستلزام (p \Rightarrow q) صحيح يكفي أن نبرهن أن الاستلزام
                                                 المضاد للعكس (\overline{q} \Rightarrow \overline{p}) صحيح
 x+y>1 \Rightarrow y>\frac{1}{2} بين أن: x\in\mathbb{R} و x\in\mathbb{R} و x\in\mathbb{R} بين أن: x\in\mathbb{R}
                           الجواب :نستعمل الاستدلال بالاستلزام المضاد للعكس
                        ^{\ref{eq:symmetric}}اذن يكفي أن نبين أن y \leq \frac{1}{2} \Rightarrow x + y \leq 1 : اذن يكفي
                  x + y \le 1: اذن x + y \le \frac{1}{2} + \frac{1}{2}: اذن x \le \frac{1}{2} = y \le \frac{1}{2}: لدينا
 x+y>1 \Rightarrow y>\frac{1}{2}ومنه : x+y>1 \Rightarrow y>\frac{1}{2} وبالتالي : x+y>1 \Rightarrow y>\frac{1}{2} ومنه :
تمرين 6: بين باستعمال الاستدلال بالاستلزام المضاد للعكس أنه: اذا كان:
                                                       y \in ]1; +\infty[ x \in ]1; +\infty[
                                                (x \neq y) \Rightarrow (x^2 - 2x \neq y^2 - 2y)
                           الجواب :نستعمل الاستدلال بالاستلزام المضاد للعكس
                   x^2 - 2x = y^2 - 2y \Rightarrow x = y : اذن يكفي أن نبين أن
                          x^2 - 2x = y^2 - 2y \Rightarrow x^2 - 2x - y^2 + 2y = 0: Levil
             \Rightarrow x^2 - y^2 - 2(x - y) = 0 \Rightarrow (x - y)(x + y) - 2(x - y) = 0
 \Rightarrow (x-y)(x+y-2) = 0 \Rightarrow x-y = 0 \Rightarrow x+y-2 \Rightarrow x = y \Rightarrow x+y-2 = 0
ونعلم أن : [1;+\infty] يعني x>1 يعني x>1 يعني ان ا
                    x+y-2\neq 0 ومنه x+y-2>0 يعني x+y>2
                                              x^{2}-2x = y^{2}-2y \Rightarrow x = y:
                                 (x \neq y) \Rightarrow (x^2 - 2x \neq y^2 - 2y): وبالتالي
                          x \neq -8 \Rightarrow \frac{x+2}{x+5} \neq 2: بين أن x \in \mathbb{R}: يتمرين 7: ليكن
                           الجواب :نستعمل الاستدلال بالاستلزام المضاد للعكس
                              \frac{x+2}{x+5} = 2 \Rightarrow x = -8 : اذن يكفي أن نبين أن
                                               \frac{x+2}{x+5} = 2 \Rightarrow x+2 = 2(x+5): لدينا
                   x+2=2(x+5) \Rightarrow x+2=2x+10 \Rightarrow -x=8 \Rightarrow x=-8
                                                          \frac{x+2}{x+5} = 2 \Rightarrow x = -8 : ومنه
                                             y \in ]2;+\infty[ y \in ]1;+\infty[
                                     (x \neq y) \Rightarrow (x^2 - 3x \neq y^2 - 3y): بين أن
```

 $(\forall x \in \mathbb{R}); (\exists y \in \mathbb{R}): y^2 = x$.13 الأجوبة :1) خاطئة 2) صحيحة 3) خاطئة 4) خاطئة 5) صحيحة 6) صحيحة 7) خاطئة 8) خاطئة (9) صحيحة (11) صحيحة (11 x = -1 خاطئة نأخذ (12 حاطئة نأخذ (12 خاطئة $\exists x \in E, \overline{A(x)}$ "هو العبارة " $\forall x \in E, A(x)$ "هو العبارة " خاصية: $\forall x \in E, \overline{A(x)}$ " هو العبارة " $\exists x \in E, A(x)$ " نفي العبارة $(\forall n \in \mathbb{N}); 2^n \succ 5(n+1)$ (1: قمرين2: حدد العبارة النافية للعبارات الآتية " $\exists x \in \mathbb{R}, x^2 - 2 = 0$ $= \frac{3}{2} \in \mathbb{Q}$ " (2) کل مثلث قائم الزاویة له زاویة حادة ($\forall n \in \mathbb{N}$); $(\exists m \in \mathbb{N}) : n < m(3)$ $ig(orall n \in \mathbb{Z} ig)$: $n \in \mathbb{Z} \Rightarrow n \geq 0$ (6) توجد نافذة في المؤسسة مكسورة $(\exists n \in \mathbb{N}): 2^n \le 5(n+1)(1:1)$ الأجوبة يوجد مثلث قائم الزاوية له زاوية $(\exists n \in \mathbb{N}); (\forall m \in \mathbb{N}): n \geq m$ $(\exists n \in \mathbb{Z})$: $n \in \mathbb{Z}$ کل نو افذ المؤسسة غير مكسورة 0 (6 مارو 0تمرين3: حدد العبارة النافية للعبارات الأتية: P; $(\forall x \in \mathbb{R})$: $x \neq 2 \Rightarrow x^2 \neq 4(1$ Q; $(\exists x \in \mathbb{R})$: $x < 2 \Rightarrow x^2 \ge 2015$ (2) \overline{P} ; $(\exists x \in \mathbb{R})$: $x \neq 2$ $x \neq 2$ \overline{Q} ; $(\forall x \in \mathbb{R})$: $x < 2 \Im x^2 < 2015$ (2) III. الاستدلالات الرياضية: 1. الاستدلال الاستنتاجي: $2 < x < 4 \Rightarrow \frac{1}{3} < \frac{1}{x-1} < 1$: بين أن $x \in \mathbb{R}$ مثال: ليكن $\frac{1}{3} < \frac{1}{x-1} < 1$: ونبين أن 2 < x < 4 ونبين أن الأجوبة : 2-1 < x - 1 < 4 - 1: اذن 2 < x < 4 الدينا $\frac{1}{3} < \frac{1}{r-1} < 1$ اذن : 1</br> $2 < x < 4 \Rightarrow \frac{1}{3} < \frac{1}{x-1} < 1 : excession = 1$ $-2 < x < \frac{1}{3} \Rightarrow \frac{-3x+5}{x+4} < \frac{11}{2}$: ت**مرین 4:**لیکن $x \in \mathbb{R}$ بین أن $\frac{-3x+5}{x+4} < \frac{11}{2}$: ونبين أن $-2 < x < \frac{1}{3}$: الأجوبة :نفترض أن $2 < x + 4 < \frac{13}{3}$ نينا $-2 + 4 < x + 4 < \frac{1}{3} + 4$:نن $-2 < x < \frac{1}{3}$: لدينا $\frac{3}{13} < \frac{1}{x+4} < \frac{1}{2}$ اذن -1 < -3x < 6 ولدينا -2 < x < 1 اذن $-2 < x < \frac{1}{3}$ 4 < -3x + 5 < 11اذن $\frac{-3x+5}{x+4} < \frac{11}{2}$ ومنه $\frac{12}{2} < \frac{-3x+5}{x+4} < \frac{11}{2}$

 $(\exists x \in \mathbb{Z}); \frac{x}{\Delta} \in \mathbb{Z} \cdot 12$

الجواب :نستعمل الاستدلال بالاستلز ام المضاد للعكس الخواب :نستعمل الاستدلال بالاستلز ام المضاد للعكس اذن يكفي أن نبين أن $x^2 - 3x = y^2 - 3y \Rightarrow x = y$?????

حل في 🏗 المعادلة 3+2|x-4|=x+5 $-\infty$ 4 $+\infty$ x-4: الجواب : ندرس اشارة : فان $x \ge 4$: اذا كانت $x \ge 4$: |x-4| = x-4: $x-4 \ge 0$ $x = 10 \in S \iff 3 + 2x - 8 = x + 5 \iff 3 + 2|x - 4| = x + 5$ |x-4|=-x+4: ومنه : $x \le 4$: اذا كانت : $x \le 4$ فان : $x \le 4$ $x = 2 \in S \iff 3 - 2x + 8 = x + 5 \iff 3 + 2|x - 4| = x + 5$ $S = \{2;10\}$: $\{2;10\}$ تمرين11: باستعمال الاستدلال بفصل الحالات $(E): x^2 - |x+1| + 1 = 0$: المعادلة \mathbb{R} x+1: الجواب :ندرس اشارة $x + 1 \ge 0$: فان $x \ge -1$: اذا كانت (E): $x^2 - |x+1| + 1 = 0$: ومنه $x(x-1) = 0 \Leftrightarrow x^2 - x = 0 \Leftrightarrow x^2 - (x+1) + 1 = 0 \Leftrightarrow$ $x = 0 \in S$ \hat{y} $x = 1 \in S \Leftrightarrow$ $x + 1 \le 0$: فان: $x \le -1$: اذا كانت $x \le -1$: (E): $x^2 - |x+1| + 1 = 0$: ومنه وهذه المعادلة ليس لها $x^2 + x + 2 = 0 \Leftrightarrow x^2 + (x+1) + 1 = 0 \Leftrightarrow$ $\Delta = -7 < 0$: لأن \mathbb{R} حل في $S = \{0:1\}$: (0:1) هي المحموعة المحلول هي المحموعة $n^2 + n$: باستعمال الاستدلال بفصل الحالات بين أن باستعمال الاستدلال بفصل الحالات بين أن $\forall n \in \mathbb{N}$ عدد زوجي $\exists k \in \mathbb{N}/n = 2k$: الحالة $n:\underline{1}$ عدد زوجي اذن $n^{2} + n = (2k)^{2} + 2k = 4k^{2} + 2k = 2(2k^{2} + k) = 2k'$ ومنه: n^2+n عدد زوجي $\exists k \in \mathbb{N} / n = 2k + 1$: اذن n : 2k + 1 عدد فردي اذن n : 2k + 1 $n^{2} + n = (2k + 1)^{2} + 2k + 1 = 4k^{2} + 4k + 1 + 2k + 1$ $n^2 + n = 4k^2 + 6k + 2 = 2(2k^2 + 3k + 1) = 2k'$ ومنه: $n^2 + n$ عدد زوجی $\forall n \in \mathbb{N}$ عدد زوجي $n^2 + n$: وبالتالي 5. الأستدلال بالخلف: لكي نبر هن أن عبارة صحيحة نفترض أن العبارة خاطئة ونحاول الحصول على تناقض مع المعطيات $\forall x \in \mathbb{R} / \frac{x^2 - 1}{r^2 + 1} \neq 1$: مثال: بين باستعمال الاستدلال بالخلف أن $\exists x \in \mathbb{R} / \frac{x^2 - 1}{x^2 + 1} = 1$: نفترض أن : الجواب يعني $x^2-1=x^2+1$ يعني $x^2-1=x^2+1$ وهذا غير صحيح $\forall x\in\mathbb{R}\ /\ \frac{x^2-1}{x^2+1}\neq 1$: ومنه ما افترضناه کان خاطنا أي عدد n عدد زوجي فان : $n \in \mathbb{N}$ عدد تمرین 13: $\exists k \in \mathbb{N} \, / \, n = 2k + 1$: نفترض أن n عدد فردي أي أن n عدد فردي أي أن $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2k' + 1$:

 $x^2-3x = y^2-3y \Rightarrow x^2-3x-y^2+3y=0$: Lexi $\Rightarrow x^2 - y^2 - 3(x - y) = 0 \Rightarrow (x - y)(x + y) - 3(x - y) = 0$ $\Rightarrow (x-y)(x+y-3)=0 \Rightarrow x-y=0$ ونعلم أن : $x \in [2;+\infty]$ يعني $x \in [1;+\infty]$ ونعلم أن : $y \in [2;+\infty]$ يعني $x+y-3\neq 0$ ومنه x+y-3>0 یعني x+y>3 $x^2-3x=y^2-3y \Rightarrow x=y$: ومنه $(x \neq y) \Rightarrow (x^2 - 3x \neq y^2 - 3y)$: وبالتالي 3. الاستدلال بالتكافؤ: يعتمد الاستدلال بالتكافؤ على القانون المنطقي التالى: $egin{pmatrix} (p \Leftrightarrow r): egin{pmatrix} egin{pmatrix} (q \Leftrightarrow r) \end{pmatrix}$ و $(p \Leftrightarrow q): egin{pmatrix} (q \Leftrightarrow r) \end{bmatrix}$ $\forall (a;b) \in (\mathbb{R}^{*+})^2$ $a+b \geq 2\sqrt{ab}$: مثال: بين أن الجواب :نستعمل الاستدلال بالتكافؤ: $a+b \ge 2\sqrt{ab} \iff a+b-2\sqrt{ab} \ge 0 \iff \left(\sqrt{a}\right)^2 + \left(\sqrt{b}\right)^2 - 2\sqrt{ab} \ge 0$ $\Leftrightarrow \left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0$ وهذا صحيح لأن المربع دائما موجب $\forall (a;b) \in (\mathbb{R}^{*+})^2$ $a+b \geq 2\sqrt{ab}$: وبالتالي $\forall x > 0, x + \frac{1}{x} \ge 2$: تمرين أن $\forall x > 0$: المجواب :نستعمل الاستدلال بالتكافؤ $x + \frac{1}{x} \ge 2 \Leftrightarrow \frac{x^2 + 1}{x} \ge 2 \Leftrightarrow \frac{x^2 + 1}{x} \ge 2$ $\Leftrightarrow \frac{x^2+1}{x}-2 \ge 0 \Leftrightarrow \frac{x^2+1-2x}{x} \ge 0$ $\Leftrightarrow \frac{x^2 + 1 - 2x}{r} \ge 0 \Leftrightarrow \frac{(x - 1)^2}{r} \ge 0$ $\forall x > 0$ و العبارة: المربع موجب و $\frac{(x-1)^2}{x}$ صحيحة لأن و بالتالي $2 \le \frac{1}{x} > 0$ صحيحة 4. الاستدلال بفصل الحالات: مثال: باستعمال الاستدلال بفصل الحالات: (E): |3x-6|=1: حل في \mathbb{R} المعادلة 3x-6: الجواب :ندرس اشارة $\begin{array}{c|cccc} x & -\infty & 2 & +\infty \\ "3x-6 & - & 0 & + \end{array}$ $3x-6 \ge 0$: فان $x \ge 2$: اذا كانت ومنه : (E): |3x-6|=1 $x = \frac{7}{3} \in S \iff 3x = 7 \iff 3x - 6 = 1 \Leftrightarrow$ $3x-6 \le 0$: فان $x \le 2$: اذا كانت $x \le 2$ (E):|3x-6|=1 $x = \frac{5}{3} \in S \Leftrightarrow -3x = -5 \Leftrightarrow -3x + 6 = 1 \Leftrightarrow -(3x - 6) = 1 \Leftrightarrow$

تمرين10: باستعمال الاستدلال بفصل الحالات

أي : n^2 عدد فردي و هذا يتناقض مع المعطيات : n^2 عدد زوجي

```
n=1 لاينا \frac{1\times(1+1)}{2}=\frac{1\times(1+1)}{2}=\frac{1\times2}{2}=1 لاينا
                                                                                                                                                         ومنه ما افترضناه كان خاطئا أي n عدد زوجي
                                                                                                                                                                                            6. الاستدلال بالترجع
                      المرحلة2: نفترض أن: \frac{n\times(n+1)}{2} صحيحة
                                                                                                                                                        n عبارة مرتبطة بعدد صحيح طبيعي p(n)
                                                                                                                                                           \forall n \in \mathbb{N} عميحة p(n) العبارة العبارة
               1+2+3+...+n+(n+1)=\frac{(n+1)\times(n+2)}{2}: نبین أن
                                                                                                                                                          n=0 نتحقق أن العبارة صحيحة بالنسبة ل
                     1+2+3+...+n+(n+1)=(1+2+3+...+n)+(n+1): لدينا
                                                                                                                                                               n العبارة صحيحة بالنسبة ل
                         1+2+3+...+n=\frac{n\times(n+1)}{2}: ولدينا حسب افتراض الترجع
                                                                                                                                                               n+1 نبين أن العبارة صحيحة بالنسبة ل
                                                                                                                               \forall n \in \mathbb{N}; 3^n \ge 1 + 2n: بين باستعمال الاستدلال بالترجع أن
                    1+2+3+...+n+(n+1)=\frac{n\times(n+1)}{2}+(n+1)=(n+1)\left(\frac{n}{2}+1\right): اذن
                                                                                                                                                                                     الجواب: نمر بثلاث مراحل:
                                                                                                                                                 n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
                                  1+2+3+...+n+(n+1)=(n+1)\left(\frac{n+2}{2}\right)=\frac{(n+1)(n+2)}{2}
                                                                                                                                  لدينا 0 \times 2 + 1 \le 0 أي : 1 \le 1 ومنه العبارة صحيحة بالنسبة ل
                                   \forall n \in \mathbb{N}^* : \frac{n \times (n+1)}{2} : \frac{n \times (n+1)}{2}
                                                                                                                                                            المرحلة2: نفترض أن: 1+2n صحيحة
تمرين17: بين n^3+2n يقبل القسمة على 3 مهما يكن العدد الصحيح
                                                                                                                           المرحلة 3^{n+1} \ge 1 + 2(n+1) نبين أن ألمرحلة 3^{n+1} \ge 1 + 2(n+1)
                                   \exists k \in \mathbb{N}/n^3 + 2n = 3k : الجواب
                                                                                                                                                                                      لدينا حسب افتراض الترجع:
                                    نستعمل الاستدلال بالترجع و نمر بثلاث مراحل:
                                                                                                                                                       3^n \times 3 \ge 3 \times (1+2n): اذن 3^n \ge 1+2n
                          n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
   لدينا 0 = 0 \times 2 \times 0 مضاعف للعدد 3 ومنه العبارة صحيحة بالنسبة ل
                                                                                                                                                          يعني : 6n+3 \ge 3^{n+1} اذن لم نجد بعد النتيجة
                                                                                                                                                نلاحظ أن 2n+1 \geq 2n+1 (يمكن حساب الفرق)
                  المرحلة 2: نفترض أن: 3k \in \mathbb{N}/n^3 + 2n = 3k صحيحة
                                                                                                                                            (6n+3)-(2n+1)=6n+3-2n-1=4n+2 \ge 0
             3^{n+1} \ge 2n+3: و 6n+3 \ge 2n+1 و منه 3^{n+1} \ge 6n+3 الدينا اذن
                       (n+1)^3 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2 =
                                                                                                                            \forall n \in \mathbb{N}; 3^n \ge 1+n: بين باستعمال الاستدلال بالترجع أن
                                                                                                                                                                                    الجواب: نمر بثلاث مراحل:
          (n^3+2n)+3n^2+3n+3=3k+3(n^2+n+1)=3(k+n^2+n+1)
                                                                                                                                                 n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
                          k' = k + n^2 + n + 1 = 3(k + n^2 + n + 1) = 3k'
                                                                                                                          n=0 لدينا 0+1 \le 3^0 أي : 1 \le 1 ومنه العبارة صحيحة بالنسبة ل
                                       \exists k' \in \mathbb{N}/(n+1)^3 + 2(n+1) = 3k' : ومنه
                                                                                                                                                            المرحلة2: نفترض أن: n+1 \geq 3^n صحيحة
                                                                                                                       3^{n+1} \ge n+2: أي نبين أن 1+(n+1) \ge 1+(n+1) أي نبين أن
وبالتالي n^3 + 2n يقبل القسمة على 3 مهما يكن العدد الصحيح الطبيعي
                                                                                                                          لدينا حسب افتراض الترجع : 1+n \geq 3^n اذن
                               : بين باستعمال الاستدلال بالترجع أن \forall n \in \mathbb{N}^* : 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n \times (n+1) \times (2n+1)}{2}
                                                                                                                                                                                        3^n \times 3 \ge 3 \times (1+n)
                                                                                                                                                            يعني : 3n+3 \ge 3n+3 اذن لم نجد بعد النتيجة
                                                               الجواب: نمر بثلاث مراحل:
                                                                                                                                                    نلاحظ أن 2n+3 \ge n+2 (یمکن حساب الفرق)
                           n=1 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
                                                                                                                                                (3n+3)-(n+2)=3n+3-n-2=2n+1 \ge 0
           لدينا \frac{1}{1} = \frac{1 \times (1+1) \times (2+1)}{1} = \frac{1 \times 2 \times 3}{1} ومنه العبارة صحيحة بالنسبة ل
                                                                                                                          3^{n+1} \ge n+2: ومنه 3n+3 \ge n+2 و 3^{n+1} \ge 3n+3 ومنه
                                                                                                                             \forall n \in \mathbb{N}; 2^n \ge 1+n: بين باستعمال الاستدلال بالترجع أن
 المرحلة2: نفترض أن: \frac{n \times (n+1) \times (2n+1)}{2} صحيحة
                                                                                                                                                                                     الجواب: نمر بثلاث مراحل:
                                                                                                                                                 n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
  ^{\circ} 1^2+2^2+3^2+...+n^2+(n+1)^2=\frac{(n+1)\times(n+2)\times(2n+3)}{6} : نبین أن
                                                                                                                            n=0 لدينا 0+1 \leq 2^0 أي : 1 \leq 1 ومنه العبارة صحيحة بالنسبة ل
                                                                                                                                                            المرحلة2: نفترض أن: n+1 \ge 2^n صحيحة
                 1^2 + 2^2 + 3^2 + \dots + n^2 + (n+1)^2 = (1^2 + 2^2 + 3^2 + \dots + n^2) + (n+1)^2 : لدينا
                                                                                                                       2^{n+1} \ge n+2 : نبين أن 2^{n+1} \ge 1+(n+1) أن أن أن 2^{n+1} \ge 1+(n+1)
         1^2+2^2+3^2+...+n^2=\frac{n\times(n+1)\times(2n+1)}{6}: ولدينا حسب افتر اض الترجع
                                                                                                                             2^n \times 2 \ge 2 \times (1+n): اذن 2^n \ge 1+n انترجع الترجع الترجع
                                                                                                                                                              يعنى : 2n+2 \ge 2n+2 اذن لم نجد بعد النتيجة
                         1^2+2^2+3^2+...+n^2+(n+1)^2=\frac{n(n+1)(2n+1)}{6}+(n+1)^2: ذن
                                                                                                                                                    نلاحظ أن 2n+2 \ge n+2 (يمكن حساب الفرق)
                                                                                                                                                                                       (2n+2)-(n+2)=n \ge 0
                                  1^2 + 2^2 + 3^2 + ... + n^2 + (n+1)^2 = (n+1) \left( \frac{n(2n+1)}{6} + (n+1) \right)
                                                                                                                               2^{n+1} \ge n+2: و 2n+2 \ge n+2 و منه 2^{n+1} \ge 2n+2 لدينا اذن
                                                                                                                      1+2+3+...+n=\frac{n\times(n+1)}{2} : نا بالترجع أن الاستدلال بالترجع أن الاستعمال الاستدلال بالترجع أن الاستعمال الاستدلال بالترجع أن الاستعمال الاستعم
                                          =(n+1)\left(\frac{n(2n+1)+6(n+1)}{6}\right)=(n+1)\left(\frac{2n^2+7n+6}{6}\right)
                               2n^2+7n+6=(n+2)(2n+3): فيمكننا أن نلاحظ أن
                                                                                                                                                                                    الجواب: نمر بثلاث مراحل:
                        ومنه : (n+1)^2+2^2+3^2+...+n^2+(n+1)^2=\frac{(n+1)\times(n+2)\times(2n+3)}{2}
                                                                                                                                                 n=1 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
```

الأستاذ: عثماني نجيب

 $\forall n \in \mathbb{N}^*$:

نمر بثلاث مراحل:

 $99 \cdot 3^{n+1} \ge 2n+3$

```
\forall n \in \mathbb{N} : 5^0 + 5^1 + 5^2 \dots + 5^n = \frac{5^{n+1} - 1}{4} : :والتالي
                     \forall n \in \mathbb{N} : 3^0 + 3^1 + 3^2 \dots + 3^n = \frac{3^{n+1} - 1}{2}بين أن:
                              12n+14 \ge 6(n+1)+7 : بين أن (2n+14) = 6(n+1)
                \forall n \in \mathbb{N}
 \forall n \geq 6 2^n \geq 6n+7 : بين باستعمال الاستدلال بالترجع أن
                                               الجواب: 1) نمر بثلاث مراحل:
                    n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
             n=0 لدينا 1=0 ومنه العبارة صحيحة بالنسبة ل 3^{0+}-1_{-1} ومنه العبارة
             المرحلة2: نفترض أن: \frac{3^{n+1}-1}{2} = \frac{3^{n+1}-1}{2} صحيحة
           3^0 + 3^1 + 3^2 \dots + 3^n + 3^{n+1} = \frac{3^{n+2} - 1}{2} : نبين أن:
           3^0 + 3^1 + 3^2 + 3^3 + \dots + 3^n + 3^{n+1} = (3^0 + 3^1 + 3^2 + 3^3 + \dots + 3^n) + 3^{n+1} کدینا
             3^0 + 3^1 + 3^2 \dots + 3^n = \frac{3^{n+1} - 1}{2}: ولدينا حسب افتر اض الترجع
                             3^0 + 3^1 + 3^2 \dots + 3^n + 3^{n+1} = \frac{3^{n+1} - 1}{2} + 3^{n+1} : ذن
                           =\frac{3^{n+1}-1}{2}+3^{n+1}=\frac{3^{n+1}-1+2\times 3^{n+1}}{2}=\frac{3\times 3^{n+1}-1}{2}=\frac{3^{n+2}-1}{2}
                                  3^0 + 3^1 + 3^2 \dots + 3^n + 3^{n+1} = \frac{3^{n+2} - 1}{2}:
                         \forall n \in \mathbb{N} : 3^0 + 3^1 + 3^2 \dots + 3^n = \frac{3^{n+1} - 1}{2} : :والتالي
                  ????? \forall n \in \mathbb{N}  12n+14 \ge 6(n+1)+7 : أن نبين أن (2
                                                                     نحسب الفرق:
        (12n+14)-(6(n+1)+7)=2n+14-6n-6-7=6n+1\ge 0
                              \forall n \in \mathbb{N}  12n+14 \ge 6(n+1)+7 : ومنه
                              ????? \forall n \geq 6 2^n \geq 6n + 7 : (2) نبین أن
                   n = 6 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
 لدينا 6+6\times6 \le 2^6 لأن: 43 \le 64 \le 6 ومنه العبارة صحيحة بالنسبة ل
                               المرحلة2: نفترض أن: 7+6n+2^n صحيحة
                           المرحلة 3: 2^{n+1} \ge 6(n+1) + 7 بببب نبین أن: 2^{n+1} \ge 6(n+1) + 7
              2^n \ge 6n+7 : الترجع الفتراض الترجع
                                                     2 \times 2^n \ge 2 \times (6n + 7)
                             يعنى: 12n + 14 \le 2^{n+1} اذن لم نجد بعد النتيجة
     \forall n \in \mathbb{N} 12n+14 \ge 6(n+1)+7 : لدينا (أر2) لدينا
              12n+14 \ge 6(n+1)+7 و 2^{n+1} \ge 12n+14: لدينا اذن
                                                  2^{n+1} \ge 6(n+1)+7:
                                     \mathbb{N}^* من n من انه مهما یکن n
 1\times2+2\times3+3\times4+4\times5+....+n\times(n+1)=\frac{1}{2}n\times(n+1)\times(n+2)
                                                   الجواب: نمر بثلاث مراحل:
                     n=1 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
 لدينا 1 \times 1 \times (1+1) \times (1+2) = \frac{1}{3} \times 2 \times 3 = 2 ومنه العبارة 1 \times 1 \times (1+1) \times (1+2) = \frac{1}{3} \times 1 \times (1+1) = 1 \times 2 = 2
                                                    n=1 صحيحة بالنسبة ل
1\times2+2\times3+3\times4+4\times5+....+n\times(n+1)=\frac{1}{2}n\times(n+1)\times(n+2)نفترض أن: (n+2)\times(n+2)\times(n+2)
```

تمرين19: بين باستعمال الاستدلال بالترجع أن: $\forall n \in \mathbb{N}^* : 1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^3$ الجواب: نمر بثلاث مراحل: n=1 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل n=1 لاينا n=1 ومنه العبارة صحيحة بالنسبة ل المرحلة2: نفترض أن: $\left(\frac{n(n+1)}{2}\right)^2$ المرحلة2: نفترض أن: $\left(\frac{n(n+1)}{2}\right)^2$ $1^3 + 2^3 + 3^3 + \dots + n^3 + (n+1)^3 = (1^3 + 2^3 + 3^3 + \dots + n^3) + (n+1)^3$: لدينا $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$: ولدينا حسب افتر اض الترجع $1^3 + 2^3 + 3^3 + \dots + n^3 + (n+1)^3 = \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3$: اذن $= \frac{n^2(n+1)^2}{4} + (n+1)^3 = (n+1)^2 \left(\frac{n^2}{4} + (n+1)\right) = (n+1)^2 \left(\frac{n^2 + 4n + 4}{4}\right)$ $= (n+1)^2 \frac{(n+2)^2}{4} = (n+1)^2 \frac{(n+2)^2}{2^2} = 2^2 \left(\frac{(n+1)(n+2)}{2} \right)^2$ $\forall n \in \mathbb{N}^* : 1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$: ومنه تمرين20: بين باستعمال الاستدلال بالترجع أن: $\forall n \in \mathbb{N}: 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 1$ الجواب: نمر بثلاث مراحل: n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل n=1 ومنه العبارة صحيحة بالنسبة ل $2^{0+}-1=1$ ومنه العبارة صحيحة بالنسبة ل المرحلة2: نفترض أن: $-2^{n+1}-1$ = $2^{n+1}-1$ صحيحة $2^0+2^1+2^2+2^3+...+2^n+2^{n+1}=2^{n+2}-1$:المرحلة: نبين أن $2^{0}+2^{1}+2^{2}+2^{3}+...+2^{n}+2^{n+1}=(2^{0}+2^{1}+2^{2}+2^{3}+...+2^{n})+2^{n+1}$: لدينا $2^{0}+2^{1}+2^{2}+2^{3}+...+2^{n}=2^{n+1}-1$: ولدينا حسب افتراض الترجع $=2^{n+1}-1+2^{n+1}=2\times 2^{n+1}-1=2^1\times 2^{n+1}-1=2^{n+2}-1$: $2^0+2^1+2^2+2^3+...+2^n+2^{n+1}=2^{n+2}-1$: ومنه $\forall n \in \mathbb{N}: 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 1:$ والتالي تمرين 21: بين باستعمال الاستدلال بالترجع أن: $\forall n \in \mathbb{N} : 5^0 + 5^1 + 5^2 \dots + 5^n = \frac{5^{n+1} - 1}{5^n}$ الجواب: نمر بثلاث مراحل: n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل n=0 و $_{-1}^{-1}$ ومنه العبارة صحيحة بالنسبة ل $_{-1}^{0+1}$ المرحلة2: نفترض أن: $\frac{5^{n+1}-1}{4}$ صحيحة $5^{0}+5^{1}+5^{2}...+5^{n}+5^{n+1}=\frac{5^{n+2}-1}{4}$ نبین أن: $5^0 + 5^1 + 5^2 + 5^3 + \dots + 5^n + 5^{n+1} = (5^0 + 5^1 + 5^2 + 5^3 + \dots + 5^n) + 5^{n+1}$: لاينا $5^0 + 5^1 + 5^2 \dots + 5^n = \frac{5^{n+1} - 1}{4}$: ولدينا حسب افتر اض الترجع $5^0 + 5^1 + 5^2 \dots + 5^n + 5^{n+1} = \frac{5^{n+1} - 1}{4} + 5^{n+1}$: نذن $=\frac{5^{n+1}-1+4\times5^{n+1}}{4}=\frac{5\times5^{n+1}-1}{4}=\frac{5^{n+2}-1}{4}$ $5^0 + 5^1 + 5^2 \dots + 5^n + 5^{n+1} = \frac{5^{n+2} - 1}{4}$:

```
n=0 مضاعف للعدد 15 ومنه العبارة صحيحة بالنسبة ل
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       المرحلة 3: نبين أن:
                                           المرحلة2: نفترض أن: 3k \in \mathbb{N}/4^{2n+2} - 1 = 15k صحيحة
                                                                                                                                                                                                                                                                                                                                                     ?? 1\times2+2\times3+3\times4+4\times5+....+n\times(n+1)+(n+1)\times(n+2)=\frac{1}{3}(n+1)\times(n+2)\times(n+3)
                                                    3k' \in \mathbb{N}/4^{2(n+1)+2} - 1 = 15k'!!!!
                                                                                                                                                                                                                                                                                                                                                                                             الترجع
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                افتراض
                                                                                                ????? \exists k' \in \mathbb{N}/4^{2n+4} - 1 = 15k' نبین أن:
                                                                                                                                                                                                                                                                                                                                                                                                                                                              1\times2+2\times3+3\times4+4\times5+....+n\times(n+1)=\frac{1}{2}n\times(n+1)\times(n+2)
                                                                                                                               \exists k' \in \mathbb{N}/b_{n+1} = 15k' ببین أن: \exists k' \in \mathbb{N}/b_{n+1} = 15k'
                                                                                       b_{n+1}-b_n = (4^{2n+4}-1)-(4^{2n+2}-1): نحسب مثلا
                                                                                           b_{n+1} - b_n = 4^{2n+2+2} - 4^{2n+2} = 4^{2n+2} (4^2 - 1)
                                                                                                                                                                                                                                                                                                                                                       1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \dots + n \times (n+1) + (n+1) \times (n+2) = \frac{1}{3} n \times (n+1) \times (n+2) + (n+1) \times (n+2)
                                                                                                                                                                                                      b_{n+1} - b_n = 15 \times 4^{2n+1}
                                                                                                                                                                                                                                                                                                                                                  = \frac{1}{3} n \times (n+1) \times (n+2) + (n+1) \times (n+2) = (n+1) \times (n+2) \left(\frac{1}{3} n + 1\right) = (n+1) \times (n+2) \left(\frac{n+3}{3} n + 1\right) = (n+1) \times (n+2) \times (n+2) = (n+2) \times (n+2) \times (n+2) = (n+2) \times (n+2) \times (n+2) = (n+2) \times (n+2
                                                 b_{n+1} = 15 \times 4^{2n+1} + b_n يعنيb_{n+1} - b_n = 15 \times 4^{2n+1} : اذن
                                                                                     \exists k \in \mathbb{N}/b_n = 15k: ولدينا حسب افتراض الترجع
                                               b_{n+1} = 15 \times (4^{2n+1} + k) b_{n+1} = 15 \times 4^{2n+1} + 15k
                                                                                                                                                                                                                                                                                                                                                         1\times2+2\times3+3\times4+4\times5+...+n\times(n+1)+(n+1)\times(n+2)=\frac{1}{3}(n+1)\times(n+2)\times(n+3)
                                                                                                                                                                                \exists k' \in \mathbb{N}/b_{n+1} = 15k' وبالتالي
                                                                                                                                            \mathbb{N} من. n من. n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \mathbb{N}^*من n من أنه مهما يكن n من
                                                                                                                                                                                                                                                                                                                                              \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots + \frac{1}{n \times (n+1) \times (n+2)} = \frac{n \times (n+3)}{4(n+1) \times (n+2)}
                                                                                                                                                                                         ويقبل القسمة على n^3 - n
                                                                                                                     \exists k \in \mathbb{N}/n^3 - n = 6k : الجواب
                                                                                                        نستعمل الاستدلال بالترجع و نمر بثلاث مراحل:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           الجواب: نمر بثلاث مراحل:
                                                                                 n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
                                                                                                                                                                                                                                                                                                                                                                                                                                  n=1 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
  n=0 لدينا 0=0 مضاعف للعدد 6 ومنه العبارة صحيحة بالنسبة ل
                                                                                                                                                                                                                                                                                                                                                                     لدينا \frac{1}{1} \frac{1}{4} \frac{1}{4} و \frac{1}{1} ومنه العبارة صحيحة بالنسبة ل
                                                                              المرحلة2: نفترض أن: \exists k \in \mathbb{N}/n^3 - n = 6k صحيحة
                                                                  1×2×3 6 4(1+1)×(1+2) 4×2×3 6
                                                                                                   (n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1 =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        المرحلة 2: نفترض أن:
                                                        = (n^3 - n) + 3n^2 + 3n = 6k + 3(n^2 + n) = 6k + 3n(n+1)
                                                                                                                                                                                                                                                                                                                                                             \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots + \frac{1}{n \times (n+1) \times (n+2)} = \frac{n \times (n+3)}{4(n+1) \times (n+2)}
      n(n+1)=2m عدد زوجي لأنه جداء عددين منتاليين n(n+1)=2m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  المرحلة: نبين أن:
                                         (n+1)^3 - (n+1) = 6k + 3 \times 2m = 6k + 6m = 6(k+m) = 6k'
                                                                                                                                                                                                                                                                                                                                                                     S = \frac{1}{1 \times 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{n \cdot (n+1) \times (n+2)} + \frac{1}{(n+1) \times (n+2) \times (n+3)} = \frac{(n+1) \times (n+4)}{4 \cdot (n+2) \times (n+3)} = \frac{(n+2) \times (n+3)}{4 \cdot (n+3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1 (n+1)\times(n+4)
                                                                                                                                   \exists k' \in \mathbb{N}/(n+1)^3 - (n+1) = 6k' وبالتالي:
                                \forall n \in \mathbb{N}  11^{n+1} - 1 = 10 \times 11^n + 11^n - 1: تمرین (1:27) بین أن
10 بين باستعمال الاستدلال بالترجع أن: 11^{n} - 1 مضاعف للعدد (2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               لدينا حسب افتراض الترجع:
(1:
                                                                                                                                                                                                                                             n \in \mathbb{N} الجواب
                                                                                                                                                                                                                                                                                                                                                                  \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots + \frac{1}{n \times (n+1) \times (n+2)} = \frac{n \times (n+3)}{4(n+1) \times (n+2)}
                                                                               11^{n+1} - 1 = 11 \times 11^{n} - 1 = (10+1) \times 11^{n} - 1 = 10 \times 11^{n} + 11^{n} - 1
                                                                                                                                        \exists k \in \mathbb{N}/11^n - 1 = 10k: يعنى نبين (2
                                                                                                        نستعمل الاستدلال بالترجع و نمر بثلاث مراحل:
                                                                             n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      n\times(n+3)^2
                                                                                                                                                                                                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                                                                                                                                    = \frac{1}{4(n+1)\times(n+2)} + \frac{1}{(n+1)\times(n+2)\times(n+3)} = \frac{1}{4(n+1)\times(n+2)\times(n+3)} + \frac{1}{4(n+1)\times(n+2)\times(n+3)} = \frac{1}{4(n+1)\times(n+3)} = \frac{1}{4
                     لدينا 0 = 1 - 1 = 10^{1} مضاعف للعدد 10 ومنه العبارة صحيحة بالنسبة ل
                                                                    المرحلة2: نفترض أن: 3k \in \mathbb{N}/11^n - 1 = 10k صحيحة
                                                                                                                                                                                                                                                                                                                                                                                                  n \times (n+3)^2 + 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   n \times (n^2 + 6n + 9) + 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      n^3+6n^2+9n+4
                                                                                   \exists k \in \mathbb{N}/11^{n+1} - 1 = 10k': المرحلة 3: نبين أن
                                                                                                                                                                                                                                                                                                                                                                                    =\frac{1}{4(n+1)\times(n+2)\times(n+3)} = \frac{1}{4(n+1)\times(n+2)\times(n+3)} = \frac{1}{4(n+1)\times(n+2)\times(n+3)}
                                                                                                               11^{n+1} - 1 = 10 \times 11^n + 11^n - 1 (1 نعلم حسب
                                                                                                                                                                                                                                                                                                                                                                                                                                                      n^3+6n^2+9n+4=(n+1)^2\times(n+4): n^3+6n^2+9n+4=(n+1)^2\times(n+4)
                                                                       \exists k \in \mathbb{N}/11^n - 1 = 10k: ولدينا حسب افتراض الترجع
                                                                                                                                                                                                                                                                                                                                                                        S = \frac{n^3 + 6n^2 + 9n + 4}{4(n+1) \times (n+2) \times (n+3)} = \frac{(n+1)^2 \times (n+4)}{4(n+1) \times (n+2) \times (n+3)} = \frac{(n+1) \times (n+4)}{4 \times (n+2) \times (n+3)} = \frac{(n+1) \times (n+4)}{4 \times (n+2) \times (n+3)} = \frac{(n+1)^2 \times (n+4)}{4 \times (n+4)} = \frac{(n+4)^2 \times (
                                                                                                                                                            11^{n+1} - 1 = 10 \times 11^n + 10k :اذن
                                                                   k' = 11^n + k مع 11^{n+1} - 1 = 10(11^n + k) = 10k' اذن: '
                                                                                                                                                          ومنه: 1^{n+1} - 1 مضاعف للعدد
                                                                                                                                                                                                                                                                                                                                                       \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots + \frac{1}{n \times (n+1) \times (n+2)} = \frac{n \times (n+3)}{4(n+1) \times (n+2)}
                                                                                                      وبالتالي: 1 - 11^n مضاعف للعدد 10 11^n - 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \forall n \in \mathbb{N}^*
                                                                                                                     \forall n \in \mathbb{N}^* A_n = 3^{2n} - 2^n : نضع
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \mathbb{N} من. n من. n
                                                                             \forall n \in \mathbb{N}^* A_{n+1} = 2A_n + 7 \times 3^{2n}: نحقق من أن (1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     15 يقبل القسمة على b_n = 4^{2n+2} - 1
     \forall n \in \mathbb{N}^* 7 بين باستعمال الاستدلال بالترجع أن A_n أن إلى بالترجع العدد (2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \exists k \in \mathbb{N}/b_n = 15k : الجواب يعني نبين
      A_{n+1} = 3^{2(n+1)} - 2^{n+1} = 3^{2n+2} - 2^{n+1} = 3^{2n} \times 3^2 - 2^n \times 2^1 (1: الجواب
                                                                                                                                                                                                                                                                                                                                                                                                                                                              نستعمل الاستدلال بالترجع و نمر بثلاث مراحل:
                                                                                                                                                                                                                                                                                                                                                                                                                                   n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
```

الأستاذ: عثماني نجيب

 $b_0 = 4^{2 \times 0 + 2} - 1 = 4^2 - 1 = 15$ Levi

```
A_{n+1} = 9 \times 3^{2n} - 2^n \times 2^1 = (7+2) \times 3^{2n} - 2^n \times 2^1 = 7 \times 3^{2n} + 2 \times 3^{2n} - 2^n \times 2^1
A_{n+1} = 7 \times 3^{2n} + 2 \times 3^{2n} - 2^n \times 2^1 = 7 \times 3^{2n} + 2(3^{2n} - 2^n) = 7 \times 3^{2n} + 2 \times A_n
                                               \exists k \in \mathbb{N}^* / A_n = 7k: يعني نبين (2
                           n=1 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
                                             A_1 = 3^{2 \times 1} - 2^1 = 3^2 - 2 = 9 - 2 = 7 لدينا
                         n=1 مضاعف للعدد 7 ومنه العبارة صحيحة بالنسبة ل
                               \exists k \in \mathbb{N}^* / A_{\perp} = 7k المرحلة 2: نفترض أن
                                 \exists k' \in \mathbb{N}^* / A_{n+1} = 7k' نبین أن: \exists k' \in \mathbb{N}^* / A_{n+1} = 7k'
                                          A_{n+1} = 7 \times 3^{2n} + 2 \times A_n: (1) حسب السؤال
       A_{n+1} = 7 \times 3^{2n} + 2 \times A_n = 7 \times 3^{2n} + 2 \times 7k = 7 \times (3^{2n} + 2k) = 7 \times k' : فذن
                                                \forall n \in \mathbb{N}^* A_n = 3^{2n} - 2^n: وبالتالي
                                          تمرین29:لیکن و عدد حقیقی موجب قطعا
      \forall n \in \mathbb{N}; (1+a)^n \ge 1+n \times a: ابین باستدلال بالترجع أن (1
                                                 \forall n \in \mathbb{N}; \quad 2^n > n : 0 (2)
                                                      الجواب: 1) نمر بثلاث مراحل:
                           n=0 المرحلة 1: نتحقق أن العبارة صحيحة بالنسبة ل
              لدينا (1+a)^0 \ge 1+0 \times a لأن 1 \ge 1 ومنه العبارة صحيحة بالنسبة ل
                            المرحلة 2: نفترض أن: 1+n \times a ضحيحة المرحلة 2:
                         (1+a)^{n+1} \ge 1 + (n+1) \times a: نبین أن
                               (1+a)^n \ge 1+n \times a: لدينا حسب افتراض الترجع
                                       (1+a)(1+a)^n \ge (1+a)(1+n \times a) : نڬ
                    يعني: (1+a)^{n+1} \ge (1+a)(1+n \times a) اذن لم نجد بعد النتيجة
           نقارن : (1+a)(1+n \times a) و (1+a)(1+n \times a) نقارن :
  (1+a)(1+n\times a)-(1+(n+1)\times a)=1+na+a+na^2-1-n\times a-a
                               (1+a)(1+n\times a)-(1+(n+1)\times a)=na^2\geq 0
                                      (1+a)(1+n\times a)\geq (1+(n+1)\times a): نذن
                                                  (1+a)^{n+1} \ge 1 + (n+1) \times a:
                                               \forall n \in \mathbb{N}; (1+a)^n \ge 1+n \times a: وبالتالي
                                  \forall a > 0; \forall n \in \mathbb{N}; (1+a)^n \ge 1+n \times a : وجدنا
                          \forall n \in \mathbb{N}; (1+1)^n \ge 1+n \times 1: فنجذ a=1: نأخذ مثلا
                                                             \forall n \in \mathbb{N}; 2^n \geq 1+n : 0
                                                 \forall n \in \mathbb{N} : 1+n > n : ولكن نعلم أن
                                                                \forall n \in \mathbb{N}; 2^n > n : اذن
```

أكاديمية الجهة الشرقية نيابة وجدة

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عَثماني نجيب مذكرة رقم/2

مذكرة رقو 2 في درس عموميات حول الدوال

الأهداف القدرات المنتظرة من الدرس:

المحدودة؛ الدالة الدورية؛

- مقارنة دالتين؛ التأويل الهندسى؛

ـ مطاريف دالة؛

ر تابة دالة عددية؛

- تركيب دالتين عدديتين؛

ـ رتابة مركب دالتين رتيبتين؛

 $x \to \sqrt{x+a}$: التمثيل المبياني للدالتين –

 $(x \rightarrow ax^3)$

ـ الدالـة المكبورة، الدالـة المصغورة؛ الدالـة ـ مقارنة تعبيرين باستعمال مختلف التقنيات؛ - استنتاج تغيرات دالة أو القيم القصوية والدنوية لدالة انطلاقا من تمثيلها المبياني أو من جدول

 $f + \lambda$ التعرف على تغيرات الدوال من الشكل و Af انطلاقا من تغيرات الدالة f?

_ استعمال التمثيل المبياني لدالة أو جدول تغيراتها لتحديد صورة مجال ولحل بعض المعادلات والمتراجحات؛

- تحدید تغیرات gof انطلاقا من تغیرات g

 $2x^2 + x - 3 = 0$

c = -3 gb = 1 g a = 2

ـ ينبغي تعويد التلاميذ على استنتاج تغيرات دالة عددية انطلاقا من تمثيلها المبياني. كما ينبغي الاهتمام بإنشاء المنحنيات؛ _ ينبغي تناول الحل المبياني لمعادلات $f(x) \le c$ و متر اجمات من النوع f(x) < g(x) g(x) = g(x) $f(x) \le g(x)$ _ يمكن في حدود الإمكان؛ استعمال الآلات الحاسبة والبرانم المعلوماتية المدمجة في

الحاسوب والتي تمكن من دراسة الدوال؛

نحل المعادلة باستعمال المميز

من ميادين أخرى.

 $\Delta = b^2 - 4ac = (1)^2 - 4 \times 2 \times (-3) = 1 + 24 = 25 = (5)^2 > 0$

ـ يستحسن معالجة وضعيات مختارة تنطلق

I. مجموعة تعريف دالة عددية "تذكير"

أمثلة: حدد مجموعة تعريف الدوال المعرفة كالتالى:

 $h(x) = \sqrt{2x^2 - x - 1} (3 g(x)) = \frac{3x + 1}{2x^2 - x - 1} (2f(x)) = 2x^3 + x + 3(1)$ $f(x) = 2x^3 + x + 3(1) = 1$

يعني $D_{\scriptscriptstyle f}=\mathbb{R}$ لأنها دالة حدودية

 $D_g = \{x \in \mathbb{R}/2x^2 - x - 1 \neq 0\}$ $g(x) = \frac{3x+1}{2x^2 - x - 1}$ (2)

نحل المعادلة باستعمال المميز $2x^2 - x - 1 = 0$

c = -1 gb = -1 g a = 2

 $\Delta = b^2 - 4\alpha c = (-1)^2 - 4 \times 2 \times (-1) = 1 + 8 = 9 = (3)^2 > 0$

بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما:

 $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ **9** $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$

 $x_2 = \frac{1-3}{2 \times 2} = \frac{-2}{4} = -\frac{1}{2}$ **9** $x_1 = \frac{-(-1) + \sqrt{9}}{2 \times 2} = \frac{1+3}{4} = \frac{4}{4} = 1$

 $D_g = \mathbb{R} - \left\{ -\frac{1}{2}; 1 \right\} \quad \text{(a)}$

 $D_h = \left\{ x \in \mathbb{R} / 2x^2 - x - 1 \ge 0 \right\} \quad h(x) = \sqrt{2x^2 - x - 1} \quad (3)$

: نحدد جدول الاشارة $x_2 = -\frac{1}{2}$ و $x_1 = 1$

x	x $-\infty$			l +∞		
2x2-x-1	+	þ	_ (+		

$$D_h = \left] -\infty, -\frac{1}{2} \right] \cup \left[1, +\infty\right[$$
: ومنه

تمرين1: حدد مجموعة تعريف الدوال المعرفة كالتالى:

$$h(x) = \frac{x^2 + x - 3}{2|x| - 1} (3 \ g(x)) = \frac{4x + 1}{x^2 + x + 1} (2 f(x)) = \frac{|x|(2x + 1)}{x(2x^2 + x - 3)} (1$$

$$C(x) = \sqrt{3-x^2} (6 B(x)) = \frac{x^2-3}{|x-1|-|x+1|} (5 A(x)) = \frac{x^2-3}{4|x|+2} (4$$

$$D_{f} = \left\{ x \in \mathbb{R} / x \left(2x^{2} + x - 3 \right) \neq 0 \right\} \left(1 \right)$$

$$x \left(2x^{2} + x - 3 \right) = 0 \Leftrightarrow x = 0$$

$$\Rightarrow x \left(2x^{2} + x - 3 \right) = 0$$

$$0 \Leftrightarrow x = \sqrt{3}$$
 نحدد جدول الأشارة:

اذن: 4 6≥6 يعني 6≥6 يعني 4	
$\forall x \in \mathbb{R} \ 6 \leq f(x)$ أي	
اذن $\stackrel{\cdot}{f}$ دالَّة مصغورة على ${\mathbb R}$ بالعدد f	
$\forall x \in \mathbb{R} \ -1 \le \cos x \le 1$: نعلم أن (2	
$-2+1 \le 2\cos x + 1 \le 2+1$ اذن: $-2 \le 2\cos x \le 2$ يعني	
$\forall x \in \mathbb{R} \ -1 \le f(x) \le 3$ يعني	
اذن: f دالة محدودة على $\mathbb R$	
$-x^4 - 4 \le 0 - 2$ یعنی $-x^4 \le 0$ یعنی $0 \ge -x^4 = 0$ یعنی $0 \le 0 \le 0$	
\sqrt{x} +6 \geq 0+6 يعني $\forall x\in\mathbb{R}^{+}$ نعلم أن \geq 0 : نعلم أن (4	
$S=I$ بالعدد f مصغورة على $I=\mathbb{R}^+$ بالعدد ومنه f مصغورة على $I=\mathbb{R}^+$	
$\forall x \in \mathbb{R} \ -1 \le \sin x \le 1$ نعلم أن $x \in \mathbb{R} \ -1 \le \sin x \le 1$	
$-3 \le \sin x - 2 \le -1$ يعني $-1 - 2 \le \sin x - 2 \le 1 - 2 \le \sin x$	
$\forall x \in \mathbb{R} \ -3 \le f(x) \le -1$ يعني $f(x) = 0$	
اذن: f دالة محدودة على $\mathbb R$	
$f(x) = x^2 - 2x + 5$: المعرفة كالتالي $f(x) = x^2 - 2x + 5$	
بین أن الدالة f مصغورة بالعدد 4 الحدد الحدد \mathbb{T} مین أن نورن أن نورن أن نورن أن الحدد الحد	
$\forall x \in \mathbb{R} \ 4 \le f(x)$ الجواب : يكفي أن نبين أن : (x)	
$f(x)-4=x^2-2x+5-4=x^2-2x+1=(x-1)^2\geq 0$ اذن نحسب الفرق $f(x)-4=x^2-2x+5-4=x^2-2x+1=(x-1)^2\geq 0$	
$\forall x \in \mathbb{R} \ 4 \le f(x)$ ومنه: (x)	
وبالتالي f مصغورة على $\mathbb R$ بالعدد 4 $\mathbb R$ بالعدد 4 $\mathbb R$ مصغورة على $\mathbb R$ بالعدد 4 مصغورة على المعدد 4 مصغورة على $\mathbb R$	
$f(x) = -2x^2 + 4x + 1$: المعرفة كالتالي $f(x) = -2x^2 + 4x + 1$ بين أن الدالة $f(x) = -2x^2 + 4x + 1$ مكبورة بالعدد 3	
بين آن آندانه f محبوره بالعدد و $\forall x \in \mathbb{R} \ f(x) \le 3$	
` /	
$3-f(x)=3-(-2x^2+4x+1)=3+2x^2-4x-1$: it is in the second of the second	\mathbb{R}
$3-f(x) = 2x^2 - 4x + 2 = 2(x^2 - 2x + 1) = 2(x - 1)^2 \ge 0$	
$\forall x \in \mathbb{R} \ f(x) \le 3$ ومنه:	
وبالتالي f مكبورة على $\mathbb R$ بالعدد 3	حيث :
$f(x) = \frac{5+4x^4}{x^4+1}$: المعرفة كالتالي $f(x) = \frac{5+4x^4}{x^4+1}$	بحيث
بین أن الدالة f مصغورة بالعدد 4	
$\forall x \in \mathbb{R} \ 4 \le f(x)$: الجواب يكفي أن نبين أن	ا خود د
اذن نحسب الفرق :	صغورة
$f(x) - 4 = \frac{5 + 4x^4}{x^4 + 1} - 4 = \frac{5 + 4x^4 - 4(x^4 + 1)}{x^4 + 1} = \frac{5 + 4x^4 - 4(x^4 + 1)}{x^4 + 1} = \frac{1}{x^4 + 1} \ge 0$	محدودة
$\forall x \in \mathbb{R} \ 4 \le f(x)$ ومنه: المنات المنا	$\forall x$
$I=[1;+\infty]$ بما يلي: الدالة العددية المعرفة على ا $I=[1;+\infty]$ بما يلي:	
$f(x) = -5x - \sqrt{x - 1}$	سغورة
$I=[1;+\infty]$ بين أن الدالة f مكبورة بالعدد 5 $-$ على	
$\forall x \in [1; +\infty[f(x)] \le -5]$ الجواب :يكفي أن نبين أن	
(1) $-\sqrt{x-1} \le 0$ يعني $\forall x \in [1;+\infty]$ يعني $0 \le 1$	

(2) $-5x \le -5 \Leftrightarrow x \ge 1 \Leftrightarrow x \in [1;+\infty]$ ولدينا

 $-\sqrt{x-1}-5x \le 0-5$: من (2) نحصل على (2) من

يعني $f = I_{1;+\infty}$ ومنه f مكبورة على $I_{1;+\infty}$ بالعدد 5-

$\begin{array}{c cccc} x & -\infty & - \\ \hline 3-x2 & - \end{array}$
3-x2 –
الدالة المصغورة و الدالة المحدودة
$f(x) = \frac{1}{x^2 + 1}$: عرفة كالتالي
f الدالة
$\forall x \in \mathbb{R}$
$\forall x \in \mathbb{R}$
f عن الدالة
$D_f = \left\{ x \in \mathbb{F} \right\}$
رهذه المعادلة ليس لها حل في ${\mathbb R}$
$\forall x \in$
$x^2+1\geq 1$
$\forall x \in \mathbb{R} \ f\left(x\right)$
العدد 1 R بالعدد 1
ة على ${\mathbb R}$ بالعدد 2؟ نعم
$\forall x \in$
$x^2 + 1 \ge 1$
V 1
ى ¶بالعدد 0 مريز عام ₪ العدد 1 ؟ نعم
ورة على \R بالعدد 1-؟ نعم $orall x \in \mathbb{R}$ 0.
ورة على $\mathbb R$ نقول f دالة محدودة على $\mathbb R$
$\mathbb R$ من I من
ى . و 1 σ
رة على مجال I إذا وجد عدد حقيقي m بحيد
+
ة على مجال I إذا كانت مكبورة و مصغور
ئة على مجال I من $\mathbb R$.تكون f دالة محدو
$\forall x \in I \ \left f(x) \right \le k$ د حقیقی k بحیث:
- حيى بم جيد : بم درار) المكبورة و المصغور دوال £ التالية الدوال المكبورة و المصغور
دوان از العالمي الدوان المعبورة و المعتمور
$I = \mathbb{I}$
$I = \mathbb{R}$
$I = \mathbb{R}$
$I=\mathbb{R}^{+}$
$I=\mathbb{R}$
$\forall x \in \mathbb{R} \ x $

 $D_c = \left[-\sqrt{3}, \sqrt{3} \right]$: each الدالة المكبورة و المالية ا **نشاط:** نعتبر الدالة f الم دد $D_{_f}$ حيز تعريف ا1 $f(x) \le 1$: بين أن $0 \le f(x)$: بين أن. 4. ماذا تستنتج ؟مادا نقول $\mathbb{R}/x^2 + 1 \neq 0$ (1: الأجوبة $x^2 = -1 \Leftrightarrow x^2 + 1 = 0$ $\in \mathbb{R} \ x^2 \ge 0$: نعلم أن (2 اذن: 1+0≤1+ ² يعني 1 $(x) \le 1 \Leftrightarrow \frac{1}{x^2 + 1} \le 1$ يعني نقول f دالة مكبورة على سؤال: هل الدالة f مكبورة $\in \mathbb{R} \ x^2 \ge 0$: نعلم أن (3 اذن: 1+0≤1+ ² يعني 1 $\forall x \in \mathbb{R} \ 0 \le f(x)$ يعني نقول f دالة مصغورة علم سؤال: هل الدالة f مصغو $0 \le f(x) \le 1$: نستنتج أن(4)اذن: f مكبورة و مصغو لتكن f دالة عددية معرفة نقول إن f دالة مكبورة f $\forall x \in I \quad f(x) \leq M$ نقول إن f دالة مصغورf $\forall x \in I \quad f(x) \ge m :$ فنقول إن f دالة محدوده ulletعلى المجال 1. 3. خاصية: لتكن f دالة عددية معرفا على المجال I إذا وجد عدد تمرين2:حدد من بين الد و المحدودة f(x) = |x| + 6.1 $f(x) = 2\cos x + 1.2$ $f(x) = -x^4 - 4.3$ $f(x) = \sqrt{x+6}.4$ $f(x) = \sin x - 2.5$ $x|\ge 0$: نعلم أن (1) نعلم

```
بين أن الدالة f دورية و \frac{\pi}{2} دور لها.
                                    يين أن الدالة g دورية و \frac{2\pi}{7} دور لها.
                                                                 D_f = \mathbb{R}(1:1)الأجوبة
                                               x + \frac{\pi}{2} \in \mathbb{R} فان x \in \mathbb{R} فان •
            f\left(x + \frac{\pi}{3}\right) = \cos 6\left(x + \frac{\pi}{3}\right) = \cos\left(6x + 2\pi\right) = \cos 6x = f\left(x\right) \bullet
                                                  ومنه f دوریة و \frac{\pi}{3}دور لها.
                                                                           D_g = \mathbb{R} (2
                                             x + \frac{2\pi}{7} \in \mathbb{R} فان x \in \mathbb{R} فان •
     g\left(x + \frac{2\pi}{7}\right) = \sin 7\left(x + \frac{2\pi}{7}\right) = \sin(7x + 2\pi) = \sin 7x = g\left(x\right)
                                                        دورية و \frac{2\pi}{7}دور لها.
                                                        IV. مطاريف دالة عددية
f(x)=x^2+2 :ينا بيا بيدرية المعرفة على \mathbb R بما يلي الدالة العددية المعرفة على
                                                                   f(0): -1.1
                        بين أن : f(0) \le f(x) على \mathbb{R} وماذا تستنتج?
                                                f\left(0\right)=2 و D_{f}=\mathbb{R}\left(1
ight.الأجوبة
                                                    \forall x \in \mathbb{R} \ 0 \le x^2: نعلم أن (2
                                              2 \le x^2 + 2 يعني 0 + 2 \le x^2 + 2 اذن:
                                                    \forall x \in \mathbb{R} \ f(0) \le f(x) يعني
                                   \mathbb{R} نقول f هي قيمة دنيا للدالة f على
                      f(x) = -2x^2 + 4x + 1 .: دالة معرفة ب: f(x) = -2x^2 + 4x + 1
                       f(x) = -2((x-1)^2 - \frac{3}{2}): (1)^2 - \frac{3}{2}
                              . \mathbb{R} من x من f(x) \le f(1) من 2
                                                f(1)=3 و D_f=\mathbb{R}(1)=3
                                              \forall x \in \mathbb{R} \ 0 \le (x-1)^2: نعلم أن (2
                            -\frac{3}{2} \le (x-1)^2 - \frac{3}{2} يعني 0 - \frac{3}{2} \le (x-1)^2 - \frac{3}{2} اذن:
              \forall x \in \mathbb{R} \ f(x) \le 3 يعني (-2)\left(-\frac{3}{2}\right) \ge (-2)\left((x-1)^2 - \frac{3}{2}\right)
                                                     \forall x \in \mathbb{R} \ f(x) \le f(1) يعني
                              \mathbb{R} فيمة قصوى للدالة f على f
I عنصر ا من المجال f عنصر ا من المجال العريف: التكن f دالة عددية معرفة على مجال العريف: التكن f
• نقول إن f(a) هي القيمة القصوى للدالة f على المجال f(a)
                                                         \forall x \in I \quad f(x) \le f(a)
• نقول إن f(a) هي القيمة الدنيا للدالة f على المجال f(a)
                                                         \forall x \in I \quad f(x) \ge f(a)
                  f(x) = 2x^2 + 2x + 3 دالة معرفة ب: f(x) = 2x^2 + 2x + 3
                             \mathbb{R} بين أن f هي قيمة دنيا للدالة f على f
                    \forall x \in \mathbb{R} \ f \ (-1) \le f \ (x) : الجواب : يكفي أن نبين أن
                                                            f(-1) = 2 - 2 + 3 = 3
                                                                اذن نحسب الفرق:
```

 $f(x) = \frac{2x^2 + 7x + 7}{x^2 + 3x + 3}$: المعرفة كالتالي كالتالي المعرفة كالتالي كالتالي المعرفة كالتالي كا f عيز تعريف الدالة D_f عدد عدد الدالة \mathbb{R} على $\frac{7}{2}$ على . \mathbb{R} . $\mathbb R$. بين أن الدالة f مصغورة بالعدد f على $\mathbb R$ f الدالة f الدالة f $D_f = \{x \in \mathbb{R}/x^2 + 3x + 3 \neq 0\}$ (1:الأجوبة $\Delta = b^2 - 4\alpha c = 3^2 - 4 \times 3 \times 1 = 9 - 12 = -3 < 0$ \mathbb{R} ومنه المعادلة ليس لها حل في $D_f=\mathbb{R}$: وبالتالي $\forall x \in \mathbb{R} \ f\left(x\right) \le \frac{7}{3}$: يكفي أن نبين أن (2 اذن نحسب الفرق: $\frac{7}{3} - f(x) = \frac{7}{3} - \frac{2x^2 + 7x + 7}{x^2 + 3x + 3} = \frac{7(x^2 + 3x + 3) - 3(2x^2 + 7x + 7)}{x^2 + 3x + 3}$ $\frac{7}{3} - f(x) = \frac{7x^2 + 21x + 21 - 6x^2 - 21x - 21}{x^2 + 3x + 3} = \frac{x^2}{x^2 + 3x + 3}$ $\Delta < 0$: بالنسبة للحدودية $x^2 + 3x + 3$ وجدنا أن $x^2+3x+3>0$: أي أن a=1 أي أشارتها هي اشارتها ومنه اشارتها $\frac{x^2}{x^2+3x+3} \ge 0$: فان $x^2 \ge 0$: وبما أنه لدينا . \mathbb{R} على f على f على $\forall x \in \mathbb{R}_{f(x) \leq \frac{7}{2}}$ على $\forall x \in \mathbb{R} \ 1 \le f(x)$: يكفي أن نبين أن (3 اذن نحسب الفرق: $f(x)-1 = \frac{2x^2+7x+7}{x^2+3x+3} - 1 = \frac{2x^2+7x+7-(x^2+3x+3)}{x^2+3x+3}$ $f(x)-1 = \frac{2x^2+7x+7-x^2-3x-3}{x^2+3x+3} = \frac{x^2+4x+4}{x^2+3x+3} = \frac{(x+2)^2}{x^2+3x+3}$ $x^{2} + 3x + 3 > 0$: بالنسبة للحدودية $x^{2} + 3x + 3 = 0$ سبق أن وضحنا أن $\frac{(x+2)^2}{x^2+3x+3} \ge 0$: فان $(x+2)^2 \ge 0$: وبما أنه لدينا ومنه: f بالتالي: الدالة f مصغورة بالعدد f على f . $\forall x \in \mathbb{R}$ $f(x) \le \frac{7}{3}$ وجدنا أن $f(x) = \frac{7}{3}$ وجدنا \mathbb{R} ومنه: $\frac{7}{3}$ اي أن $\forall x \in \mathbb{R} \ 1 \le f(x) \le \frac{7}{3}$ III. الدالة الدورية $f(x) = \cos x$: المعرفة كالتالي $f(x) = \cos x$ $\forall x \in \mathbb{R}$ $f(x+2\pi)$ و f(x): قارن $f(x+2\pi) = \cos(x+2\pi) = \cos x = f(x)$ الجواب لتكن f دالة عددية و D مجموعة تعريفها. نقول إن f دالة دورية إذا وجد عدد حقيقي T موجب قطعا بحيث : $x+T\in D$ فان $x\in D$ اذا کانت $\forall x \in D \quad f(x+T) = f(x) \bullet$ $T=2\pi$ و دوریة و دورهم sin و \cos : مثال $T=\pi$: الدالة tan دورية ودورها هو \mathbb{R} نعتبر الدوال f و g المعرفة على

 $g(x) = \sin 7x$ و $f(x) = \cos 6x$

$$\frac{1}{2} - f(x) = \frac{x^2 + 1 - 2x\sqrt{x^2 + 1} + x^2}{2} = \frac{\left(\sqrt{x^2 + 1}\right)^2 - 2\sqrt{x^2 + 1} \times x + x^2}{2} = \frac{\left(\sqrt{x^2 + 1} - x\right)^2}{2} \ge 0$$

ومنه f مكبورة بالعدد f

V. مقارنة دالتين

نشاط1: لتكن الدالتين العدديتين f و g المعرفتين على \mathbb{R} بما يلي: $f(x)=x^2$ و f(x)=2x-1

- مثل الدالتين f و g في نفس المعلم f
- 2. أدرس اشارة الفرق: g(x)-f(x) وماذا تستنتج مبيانيا؟

الأجوبة: $D_{_{\scriptscriptstyle \rho}}=\mathbb{R}$ و $D_{_{\scriptscriptstyle \rho}}=\mathbb{R}$ (1:الأجوبة

х	3	2	1 -	0	1	2	3
g(x)	9	4	1	0	1	4	9

х	0	1
f(x)	1	1
	-	,

\	6 -	/ /
\	5 -	
Cg	4 -	
	3 -	
	2 -	
	1-	Æ
-3 -2 -1	0 0 1	2 3
	-1 ₂ (Cf)	
	-2-	

 $g(x) \ge f(x)$ ومنه $g(x) - f(x) = x^2 - 2x + 1 = (x - 1)^2 \ge 0$ (2 $g \ge f$: نقول أننا قمنا بمقارنة للدالتين f و g وجدنا أن f مبيانيا نلاحظ أن منحنى الدالة g يوجد فوق منحنى الدالة f نشاط2: لتكن f و g الدالتين العدديتين المعرفتين كالتالي :

$$g(x) = x^2 \quad \text{of } f(x) = x$$

- D_{g} و D_{f} .1
- g و f أرسم في معلم متعامد ممنظم منحنى الدالتين f
 - g و f قارن f و

تعریف التکن f و g دالتین عددیتین و D_f و و التوالي مجموعة تعریفهما.

نقول إن f تساوي g ونكتب g إذا وفقط إذا كان:

$$(\forall x \in D_f)$$
 $f(x) = g(x)$ $D_g = D_f$

تعریف :لتکن f و g دالتین عدیتین معرفتین علی مجال I .نقول إن $f \leq g$ اخا وفقط اذا $f \leq g$ علی مجال f ونکتب $f \leq g$ اذا وفقط اذا کان : $f(x) \leq g(x)$

التأويل الهندسي : g على مجال I يعني هندسيا أن منحنى الدالة $f \leq g$ على المجال f يوجد تحت منحنى الدالة g على المجال f

<u>ملحوظة :</u>

I على المجال f < g

 $(\forall x \in I) \ f(x) < g(x)$: إذا وفقط إذا كان

 $(\forall x \in I) \ f(x) \ge 0$: كان I إذا وفقط إذا كان $f \ge 0$

$$f(x)-f(-1) = 2x^2 + 2x + 1 - 3 = 2x^2 + 2x - 2$$

 $\Delta = b^2 - 4ac = 2^2 - 4 \times 2 \times 2 = 4 - 16 = -12 < 0$

 $2x^2+2x-2>0$: اذن اشارة الحدودية هي اشارة a=2

 $f(-1) \le f(x)$: each

 \mathbb{R} وبالتالي: f هي القيمة الدنيا للدالة f على

 $f(x) = \frac{x^2+1}{x^2+x+1}$: المعرفة كالتالي وتعتبر الدالة f(x)

- f حيز تعريف الدالة $D_{\scriptscriptstyle f}$ حدد
- . \mathbb{R} على f على القيمة الدنيا للدالة f على 2
- . \mathbb{R} على f على القيمة القصوى للدالة f على f .3

$$D_f = \{x \in \mathbb{R} / x^2 + x + 1 \neq 0\}$$
 (1:الأجوبة

 $\Delta = b^2 - 4ac = 1^2 - 4 \times 1 \times 1 = 1 - 4 = -3 < 0$

 $D_{\scriptscriptstyle f} = \mathbb{R}$: ومنه المعادلة ليس لها حل في \mathbb{R}

 $\forall x \in \mathbb{R} \ f \ (1) \leq f \ (x) : كفي أن نبين أن (2)$

$$f(1) = \frac{1^2 + 1}{1^2 + 1 + 1} = \frac{2}{3}$$

$$f(x)-f(1) = \frac{x^2+1}{x^2+x+1} - \frac{2}{3} = \frac{3x^2+3-2(x^2+x+1)}{3(x^2+x+1)} = \frac{x^2-2x+1}{3(x^2+x+1)}$$

$$f(x)-f(1)=\frac{(x-1)^2}{3(x^2+x+1)}$$
: اذن

 $\Delta < 0$ بالنسبة للحدودية : $x^2 + x + 1$ وجدنا

 $x^2+x+1>0$: أي أي الشارة الحدودية هي الشارة a=1

 $f(x)-f(1)\geq 0$: اذن $(x-1)^2\geq 0$: ونعلم أن

 $\forall x \in \mathbb{R} \ f(1) \le f(x)$: each

. \mathbb{R} على على القيمة الدنيا للدالة f على f (1) و بالتالي .

 $\forall x \in \mathbb{R} \ f(x) \le f(-1)$: ننبین أن نبین أن يكفي (3

$$f(-1) = \frac{(-1)^2 + 1}{(-1)^2 - 1 + 1} = 2$$

 $f(-1)-f(x)=2-\frac{x^2+1}{x^2+x+1}=\frac{2(x^2+x+1)-(x^2+1)}{x^2+x+1}=\frac{x^2+2x+1}{x^2+x+1}$

$$f(-1)-f(x) = \frac{(x+1)^2}{x^2+x+1}$$
: اذن

بالنسبة للحدودية : $x^2 + x + 1$ سبق أن بيننا أن $x^2 + x + 1 > 0$

 $f(-1)-f(x) \ge 0$: اذن $(x+1)^2 \ge 0$: ونعلم أن

 $\forall x \in \mathbb{R} \ f(x) \le f(-1)$: ومنه

. \mathbb{R} على f على القيمة القصوى للدالة $f\left(-1\right)$ على

: كالتالي الدالة f المعرفة على كالتالي المعرفة على

 $\frac{1}{2}$ بين أن الدالة $f(x) = x\sqrt{x^2 + 1} - x^2$

 $\forall x \in \mathbb{R} \ f\left(x\right) \leq \frac{1}{2}$: الجواب: يكفي أن نبين أن

$$\frac{1}{2} - f(x) = \frac{1}{2} - x\sqrt{x^2 + 1} + x^2 = \frac{1 - 2x\sqrt{x^2 + 1} + 2x^2}{2} = \frac{1 - 2x\sqrt{x^2 + 1} + 2x^2}{2}$$

 $(g \circ f)(x) = g(f(x)) = g(x+1) = (x+1)^2 = x^2 + 2x + 1$ الجواب $(f \circ g)(x) = f(g(x)) = f(x^2) = x^2 + 1$ $g \circ f \neq f \circ g$:نلاحظ تمرين 15: لتكن f و g الدالتين العدديتين المعرفتين كالتالى : $(g \circ f)(x) = g(x) = x^3 - x$ g(x) = -x + 1 $(g \circ f)(x) = g(f(x)) = g(-x+1) = (-x+1)^3 - (-x+1)$ الجواب: $(g \circ f)(x) = (1-x)^3 - (-x+1) = 1^3 - 3 \times 1 \times x + 3 \times 1 \times x^2 - x^3 + x - 1$ $(g \circ f)(x) = 1^3 - 3x + 3x^2 - x^3 + x - 1 = -x^3 + 3x^2 - 2x$ تعریف التکن f و g دالتین عددیتین و $D_{_{
m f}}$ و $D_{_{
m g}}$ على التوالي مجموعة تعريفهما. $D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in D_f \mathcal{J}(x) \in D_g \right\}$ h(x) = g(f(x)) : يلي بما يلي على على المعرفة على ا $g\circ f$ تسمى مركب الدالتين f و g في هذا الترتيب ويرمز لها بالرمز $\forall x \in D_{g \circ f} (g \circ f)(x) = g(f(x))$: ومنه تمرين 16: لتكن f و g الدالتين العدديتين المعرفتين كالتالى : $g(x) = \sqrt{x}$ g(x) = x - 1 $\forall x \in D_{g \circ f} \quad (g \circ f)(x)$ حدد $D_{g \circ f} \circ D_{g} \circ D_{g} \circ D_{g}$ حدد عدد الم $D_g = \{x \in \mathbb{R} / x \ge 0\} = [0, +\infty]$ و $D_f = \mathbb{R}$ $D_{o \circ f} = \left\{ x \in \mathbb{R} / x \in D_f \mathcal{J}(x) \in D_o \right\}$ $D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in \mathbb{R} f(x) \in [0, +\infty] \right\}$ $D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in \mathbb{R} : x + 1 \in [0, +\infty] \right\}$ $D_{g \circ f} = \{x \in \mathbb{R}/x \ge -1\} \Leftrightarrow D_{g \circ f} = \{x \in \mathbb{R}/x +1 \ge 0\}$ $D_{\sigma \circ f} = [-1; +\infty]$ $(g \circ f)(x) = g(f(x)) = g(x-1) = \sqrt{x-1}$ تمرين17نتكن f و g الدالتين العدديتين المعرفتين كالتالى : $g(x) = \sqrt{x+1} \ \ \ \ \ \ \ \ f(x) = x-3$ $\forall x \in D_{g \circ f} \quad (g \circ f)(x)$ حدد : $D_{g \circ f} \circ D_{g} \circ D_{$ $D_{f} = \mathbb{R}$ الجواب $D_{\varrho} = \{x \in \mathbb{R} / x + 1 \ge 0\} = \{x \in \mathbb{R} / x \ge -1\} = [-1, +\infty]$ $D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in D_f \mathcal{J} f(x) \in D_g \right\}$ $D_{oof} = \left\{ x \in \mathbb{R} / x \in \mathbb{R} f(x) \in [1, +\infty] \right\}$ $D_{g \circ f} = \left\{ x \in \mathbb{R} / x - 3 \in [-1, +\infty] \right\}$ $D_{g \circ f} = \{x \in \mathbb{R}/x \ge 2\} \Leftrightarrow D_{g \circ f} = \{x \in \mathbb{R}/x - 3 \ge -1\}$ $D_{g\circ f}= [2;+\infty[$ $(g \circ f)(x) = g(f(x)) = g(x-3) = \sqrt{x-3+1} = \sqrt{x-2}$ VII. رتابة دالة عدية نشاط1: لتكن f و g الدالتين العدديتين المعرفتين كالتالي : g(x) = -3x + 2 g(x) = 4x - 3g و f أدرس رتابة لأنها دالة حدودية $D_r = \mathbb{R}$ (1

تمرين 12: تطبيقي: قارن الدالتين العدديتين f و g المعرفتين كالتالى : $f(x) = 4x^2$ g(x) = 4x - 1واعط تأويلا مبيانيا للنتيجة الجواب : $D_{g}=\mathbb{R}$ و $D_{f}=\mathbb{R}$ كأنهم دوال حدودية $D_{f}=\mathbb{R}$ $f(x)-g(x)=4x^2-4x+1=(2x-1)^2 \ge 0$ ومنه : $f \ge g$ بالتالی منحنی الداله $f \ge g$ \mathbb{R} على \mathbb{R} . تمرین13:أدرس الوضع النسبی لمنحنی الداله f و منحنی الداله g حیث $g(x) = x \quad \Im f(x) = x + \frac{1}{2}$ $D_g = \mathbb{R}$ و $D_f = \mathbb{R} - \{-1\}$ الجواب: $f(x)-g(x)=x+\frac{1}{x+1}-x=\frac{1}{x+1}$ x+1 ندریس اشارهٔ الحالة f:اذاكانت $f \geq g$ فان $f \geq g$ فان بالتالي منحنى الدالة $f \geq g$ فوق -منحنى الدالة g على $]-1;+\infty$ الحالة $\underline{x} < -1$ الدالة f يوجد تحت $g \ge f$ فان x < -1 يوجد تحت منحنی الدالة g علی $]-\infty;-1$ منحنی تمرين14: نعتبر الدالتين f و g المعرفتين على $\mathbb R$ كالتالى : $g(x) = -x^2 + 2x + 2$ 9 $f(x) = x^2 - 3x + 5$ أدرس الوضع النسبي لمنحنى الدالة f و منحنى الدالة g $D_g = \mathbb{R}$ و $D_f = \mathbb{R}$ الجواب $f(x)-g(x)=x^2-3x+5-(-x^2+2x+2)=2x^2-5x+3$ $2x^{2}-5x+3$ ندرس اشارة c = 3 $_{9}b = -5$ $_{9}a = 2$ $\Delta = b^2 - 4ac = (-5)^2 - 4 \times 2 \times 3 = 25 - 24 = 1 > 0$ بما أن $0 \prec \Delta$ فان لهذه الحدودية جذرين هما: $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ **9** $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ $x_2 = \frac{5-1}{2 \times 2} = \frac{4}{4} = 1$ **9** $x_1 = \frac{5+1}{2 \times 2} = \frac{6}{4} = \frac{3}{2}$ 2x2-5x+3 $f \ge g$ الحالة 1:اذاكانت $3/2 \ge x \le 1$ أو $x \le 1$ فان يوجد فوق منحنى f منحنى الدالة الدالة g .] $-\infty$,1] \cup $\left[\frac{3}{2},+\infty\right]$ على الحالة $g \geq f$ النالي منحنى $1 \leq x \leq \frac{3}{2}$ النالي منحنى الحالة المانت المان $\left[1,\frac{3}{2}\right]$ على $\left[1,\frac{3}{2}\right]$ على الدالة fVI. مرکب دالتین نشاط1: لتكن f و g الدالتين العدديتين المعرفتين كالتالي :

 $g(x) = x^2$ o f(x) = x + 1

ص 14

حدد : $(g \bigcirc f)(x) = g(f(x))$ و

ماذا تلاحظ $(f \cap g)(x) = f(g(x))$

: اإذا كانت f دالة زوجية فانf

- تزايدية قطعا على المجال I إذا وفقط إذا كانت f تناقصية قطعا على المجال I'
- f تناقصية قطعا على المجال I إذا وفقط إذا كانت f تزايدية قطعا على المجال I' إذا كانت f دالة فردية فان:

 I^\prime و I لها نفس الرتابة على كل من المجالين f

VIII. رتابة مركب داالتين:

خاصية : لتكن f و g دالتين عديتين معرفتين على التوالي على الريا : $(\forall x \in I)$ $f(x) \in J$ على المجالين $f(x) \in J$ بحيث :

- Jو قطعا على g و ترايدية قطعا على f ترايدية قطعا على f فان f و ترايدية قطعا على f
- J تناقصیة قطعا علی g و تناقصیة قطعا علی f قان تناقصیة قطعا علی $g \circ f$ فان تنایدیة قطعا علی $g \circ f$
- J و تناقصية قطعا على g و تناقصية قطعا على f فان : f و تناقصية قطعا على $g \circ f$
- J المانت f تناقصية قطعا على f و g تزايدية قطعا على المان f فان $g \circ f$ تناقصية قطعا على $g \circ f$

: $x \to ax^3$ 9 $x \to \sqrt{x+a}$ Letting the large $x \to ax^3$ 1. Its $x \to ax^3$ 1. Its

 $f(x) = \sqrt{x+2}$: کالتالي

f مجموعة تعريف الدالة D_f محدد

- f على D_f وحدد جدول تغيرات D_f على .2
- f أنشئ التمثيل المبياني للدالة f في معلم متعامد ممنظم .

 $D_f = \{x \in \mathbb{R}/x + 2 \ge 0\} = \{x \in \mathbb{R}/x \ge -2\} = [-2, +\infty[(1: -2)] = (-2, +\infty[(1: -2)]) = (-2, +\infty[(1: -2)]$

 $x_1 < x_2$ بحيث $x_2 \in [-2; +\infty[$] $x_1 \in [-2; +\infty[$] يكن (2)

 $f(x_1) < f(x_2)$ اذن: $x_1 + 2 < x_2 + 2$ اذن: $x_1 + 2 < x_2 + 2$ اذن $x_1 + 2 < x_2 + 2$ اذن ایدیة علی $x_1 + 2 < x_2 + 2$

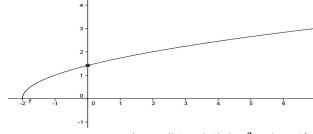
 $\sqrt{2}$

1

f(x)

L

7 x f(x)



 $\stackrel{\cdot}{x}$ مثال: لتكن f الدالة العددية للمتغير الحقيقي

 $f(x) = \frac{1}{4}x^3$: المعرفة كالتالي

1. حدد D_f مجموعة تعریف الدالة f و بین أن الدالة f تزایدیة قطعا D_f علی D_f

f حدد جدول تغیرات 2

 $x_1 < x_2$ ليكن $x_2 \in \mathbb{R}$ و $x_1 \in \mathbb{R}$ بحيث $x_1 \in \mathbb{R}$

 $4x_1 - 3 < 4x_2 - 3$: اذن $4x_1 < 4x_2$: اذن

 $f(x_1) < f(x_2)$: اذن

 \mathbb{R} ومنه الدالة f تزايدية على

لأنها دالة حدودية $D_g = \mathbb{R}$ (2

 $x_1 < x_2$ بحيث $x_2 \in \mathbb{R}$ و $x_1 \in \mathbb{R}$ بحيث $x_1 \in \mathbb{R}$

: اذن : $-3x_1 + 2 > -3x_2 + 2$ اذن : اذن

 $g\left(x_{1}\right) > g\left(x_{2}\right)$

 \mathbb{R} ومنه الدالة g تناقصية على

 $f(x) = 2x^2$: لتكن f الدالة العددية المعرفة كالتالي $f(x) = 2x^2$ الدالة العددية المعرفة كالتالي الدالة العددية العددية المعرفة كالتالي الدالة العددية ال

]-∞;0] و $[0;+\infty[$: على كل من المجالين f على كل من المجالين (2) على 2) على 2) على 2) على 2

أجوبة $D_f = \mathbb{R}$ (1) أجوبة

 $[0;+\infty[$ المجال على المجال $[0;+\infty[$

 $x_1 < x_2$ بحيث $x_2 \in [0; +\infty[$ و $x_1 \in [0; +\infty[$: ليكن $f(x_1) < f(x_2)$ ومنه $x_1^2 < 2x_2^2$ ومنه الدالة $x_1^2 < 2x_2^2$ تزايدية على $x_1^2 < 2x_2^2$

 $[-\infty;0]$ در اسة رتابة الدالة f على المجال

 $x_1 < x_2$ ليكن $x_1 \in]-\infty;0]$ و $x_1 \in]-\infty;0]$ يكن $f(x_1) > f(x_2)$ ومنه $x_1^2 > 2x_2^2 > 2x_2^2$ ومنه الدالة $x_1^2 > x_2^2 > 2x_2^2$ تناقصية على $x_1^2 > x_2^2 > x_2^2$ ومنه الدالة $x_1^2 > x_2^2 > 2x_2^2$ قيرات الدالة $x_1^2 > x_2^2 > x_2^2$

		v			`
x	$-\infty$		0		$+\infty$
f(x)	,	_	0	/	

منحى تغيرات دالة عددية

 $\frac{1}{1}$ تعریف انگن f داله عدیه و I مجالا ضمن مجموعه تعریفها

- : light in the light in the law of the light in the ligh
- : ideal ideal I like I li
- : Le distributed in the second of the secon

ملحوظة :يمكن دراسة رتابة دالة f على مجال I بدراسة إشارة معدل التغير : $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$

I مع x_2 عنصرین مختلفین من x_1

•نقول إن f دالة رتيبة على I إذا كانت f تزايدية قطعا أو تناقصية قطعا على مجال I.

التكن f دالة عددية مجموعة تعريفها D_f متماثلة بالنسبة للصفر. D_f محدد D_f مجموعة تعريف الدالمة f و بين أن الدالمة f تزايدية قطعا f

I'و D_f نسمن \mathbb{R}^+ مجالا من

مماثل I بالنسبة للصفر

. أنشئ التمثيل المبياني للدالة f في معلم متعامد ممنظم .

الجواب $D_f = \mathbb{R}$ النها دالة حدودية

 $x_1 < x_2$ بحيث $x_2 \in \mathbb{R}$ و $x_1 \in \mathbb{R}$

 $f(x_1) < f(x_2)$ إذن $\frac{1}{4} \times x_1^3 < \frac{1}{4} \times x_2^3$ ومنه $x_1^3 < x_2^3$

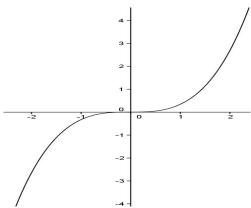
 ${\mathbb R}$ ومنه الدالة f تزايدية على

(2

x	$-\infty$	$+\infty$
f(x)		<i></i>

(3

Х					1		
f(x)	6.5	-2	- 1/ 4	0	1/4	2	6.5



تمارین للبحث: f و g المعرفتین کالتالي:

$$g(x) = \frac{2x+1}{x-2} \quad \text{if } (x) = \frac{1}{x}$$

 $g\circ f$ عيز تعريف الدالة $D_{g\circ f}$.1

 $g \circ f$ حدد صيغة الدالة 2.

 $g(x) = \sqrt{x}$ و $f(x) = x^2 + 2$: تعرین و $f(x) = x^2 + 2$ و $g(x) = x^2 + 2$ و $g(x) = x^2 + 2$

 $g \circ f$ الدالة عدد صيغة الدالة 1

وجية $g \circ f$ زوجية يأكد أن الدالة

g و f ادرس رتابة كل من الدالتين f

 $f(x) = -\frac{1}{2}x^3$ الدالة العددية للمتغير الحقيقي x المعرفة كالتالي: $f(x) = -\frac{1}{2}$

f مجموعة تعريف الدالة D_f محموعة تعريف الدالة

f تناقصية قطعا على D_f حدد جدول تغيرات f .2

. أنشئ التمثيل المبياني للدالة f في معلم متعامد ممنظم .

أكاديمية الجهة الشرقية نيابة وجدة

الرياضيات مـا د ة

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مذكرة رقم/3

مذكرة رقو3 في درس المرجع

الأهداف القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
_ قبل تعريف المرجح يستحسن التحسيس	- استعمال المرجح في تبسيط تعبير متجهي؛	مرجح n نقطة $(2 \le n \le 4)$ ؛ مركز الثقل؛
بالارتباط الموجود بين مفهوم المرجح في	انشاء مرجح n نقطة $(2 \le n \le 4)$	_ الخاصية المميزة للمرجح؛ الصمود؛
الرياضيات ومفاهيم أخرى من بعض مواد	- استعمال المرجح لإثبات استقامية ثلاث نقط من	التجميعية؛
التخصص؛	المستوى؛	
- ينبغي إبراز الدور الذي يلعبه المرجح في	- استعمال المرجح في إثبات تقاطع المستقيمات؛	
حل بعض المسائل الهندسية.	_ استعمال المرجح في حل مسائل هندسية	
	وفيزيانية.	

I. مرجح نقطتین متزنتین

نشاط 1: لتكن A و B نقطتين مختلفتين من المستوى

- (E) $4\overline{GA} 5\overline{GB} = \overline{0}$: بين أنه توجد نقطة بحيث (1
 - G أنشئ النقطة (2)

 $4+(-5)\neq 0$: الأجوبة: 1) نلاحظ أن

(استعمال علاقة شال) $42\overline{GA} - 5(\overline{GA} + \overline{AB}) = \overline{0}$ يعني $4\overline{GA} - 5\overline{GB} = \overline{0}$

 $\overrightarrow{AG} = 5\overrightarrow{AB}$ يعني $\overrightarrow{GA} - 5\overrightarrow{AB} = 0$ يعني $4\overrightarrow{GA} - 5\overrightarrow{GA} - 5\overrightarrow{AB} = 0$ (E) تحقق (AB) اذن توجد نقطة وحيدة G على المستقيم

نشاط2: لتكن A و B نقطتين مختلفتين من المستوى $2\overline{GA} - 2\overline{GB} = \overline{0}$: هل توجد توجد نقطة ميث G بحيث

الجواب: نلاحظ أن: 2-2-0

يعني $\overline{GA} = 2\overline{GA} - 2(\overline{GA} + \overline{AB}) = 0$ يعني $\overline{GA} = 0$ (استعمال علاقة شال)

يعنى $\overline{2AB} = \overline{0}$ يعنى $2\overline{AB} = \overline{0}$ وهذا غير ممكن (E) اذن G تحقق اذن G اندن G اندن G

1. نقطة متزنة

لتكن A نقطة من المستوى و a عددا حقيقيا

A الزوج (A;a) يسمى نقطة متزنة و العدد a يسمى وزن النقطة

(a نقول كذلك أن النقطة A معينة بالمعامل A

3.1.خاصية و تعريف

 $a+b\neq 0$ نقطتین متزنتین من المستوی بحیث (A;a) نقطتین متزنتین من المستوی بحیث

 $a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{0}$: توجد نقطة وحيدة G من المستوى بحيث

(B;b) و (A;a) النقطة G تسمى مرجح النقطتين المتزنتين

(B;b) و (A;a) المتزنتين (A;a) و a+b=0 ملاحظة المتزنتين a+b=0

ليس لهم مرجح مرجح النقطة G مرجح النقطتين المتزنتين (A;a) و (B;b)

فان: $\overline{AG} = \frac{b}{AA}$ (استعمال علاقة شال) و هذه الكتابة تستعمل لرسم

G النقطة

<u>تمرين1:</u>

ا. أنشئ G مرجح النقطتين (A; -2) و (B; 3) ثم أنشئ G مرجح (B; 3)(B;1) و (A;2)

 \overrightarrow{AB} بدلالة \overrightarrow{GG}' بدلالة 2.

(B;3) و (B;3) باستعمال العلاقة A;-2 و النقطتين العلاقة A;-2

 $\bigcirc \overline{AG} = 3\overline{AB}$ يعني $\overline{AG} = \frac{3}{(-2)+3}\overline{AB}$

ولدينا G' مرجح النقطتين (A;2) و (B;1) وباستعمال العلاقة (B;1) $\stackrel{\text{(3)}}{\overrightarrow{AG}} = \frac{1}{3} \overrightarrow{AB}$ يعني $\overrightarrow{AG} = \frac{1}{1+2} \overrightarrow{AB}$

 $\overrightarrow{GG} = \overrightarrow{GA} + \overrightarrow{AG} = -\overrightarrow{AG} + \overrightarrow{AG} = -3\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AB} = \left(-3 + \frac{1}{3}\right)\overrightarrow{AB} = -\frac{8}{3}\overrightarrow{AB}$: نذن

2. خاصیات مرجح نقطتین متزنتین

(A;-0.003) مرجح النقطتين المتزنتين G مرجح النقطتين المتزنتين $A \neq B$ حيث (B;-0,001) و

(B;-0.001) و (A;-0.003) و (B;-0.001) و (B;-0.001)

يعني $\overline{G}=\overline{G}$ و \overline{G} يعني نفس العدد : $\overline{G}=0.000$ نضر ب طر في المتساوية في نفس العدد : k = 1000

(A; -3) يعني Gمرجح النقطتين المتزنتين Gمرجح يعني Gمرجح عني المتزنتين المتزنتين

وباستعمال العلاقة ① نجد $\overline{AG} = \frac{-1}{(-1) + (-3)} \overline{AB}$: وباستعمال العلاقة

مرجح نقطتين متزنتين لا يتغير بضرب معامليهما في عدد حقيقي غير

 \mathbb{R}^* من k من کان G مرجح النقطتين المتزنتين (A;a) و (A;a) فان لکل من

 $\left(B;kb
ight)$ و $\left(A;ka
ight)$ و $\left(B;kb
ight)$ و G

 $(B;-\sqrt{2})$ و $(A;\sqrt{8})$ المتزنتين $(A;\sqrt{8})$ مرجح النقطتين المتزنتين G

(B;1) و (A;-2): ورجح النقطتين G مرجح

الجواب: حسب خاصية الصمود نضرب وزني النقطتين في نفس العدد : الحقيقي و المرجح لا يتغير نأخذ $\frac{1}{\sqrt{2}}$ انن G مرجح النقطتين

 $\sqrt{8} = 2\sqrt{2}$: نلاحظ أن (1,3) و $\left(A; -2 \right) = \left(A; -\frac{1}{\sqrt{2}} \right)$ و $\left(A; -\sqrt{8} \times \frac{1}{\sqrt{2}} \right)$

b. الخاصية المميزة

 $a+b\neq 0$ تقطتین متزنتین من المستوی بحیث (a;b) و (a;a) لتکن $a+b\neq 0$ نقطة من المستوی

M مرجح النقطتين المتزنتين $\left(A;a
ight)$ و $\left(B;b
ight)$ إذا وفقط إذا لكل نقطة G

$$a\overrightarrow{MA} + b\overrightarrow{MB} = (a+b)\overrightarrow{MG}$$
 : من المستوى

البرهان : لتكن M نقطة من المستوى

(استعمال علاقة شال)
$$a\overline{MA} + b\overline{MB} = a(\overline{MG} + \overline{GA}) + b(\overline{MG} + \overline{GB})$$

$$a\overline{MA} + b\overline{MB} = (a+b)\overline{MG} + a\overline{GA} + b\overline{GB}$$

$$a\overline{GA}+b\overline{GB}=\overline{0}$$
 مرجح النقطتين المتزنتين $(A;a)$ و $(A;a)$ يعني G

$$a\overline{MA} + b\overline{MB} = (a+b)\overline{MG}$$
 يعني $a\overline{GA} + b\overline{GB} = 0$

استنتاج :بوضع : M=A (على التوالي M=B) في الخاصية المميزة نحصل على : $\overline{AG}=\frac{b}{a+b}\overline{AB}$

G على التوالي $\overline{BG} = \frac{b}{a+b}$ وهذه الكتابات تمكننا من رسم النقطة (على التوالي

وتبين لنا أن : A و B و B نقط مستقيمية.

 $\overline{EG} = 2\overline{EF}$ و $\overline{EG} = 2\overline{EF}$ و E نقطتين من المستوى بحيث: $E \not\in (AB)$

(F;2) و (E;-1) بين أن G مرجح النقطتين المتزنتين G

2) استنتج أن المستقيمين (EF) و (AB) يتقاطعان محددا نقطة تقاطعهما.

الأجوبة:

(استعمال علاقة شال)
$$\overline{EG} = 2(\overline{EG} + \overline{GF})$$
 يعني $\overline{EG} = 2\overline{EF}$ (1

$$\overline{EG} - 2\overline{EG} = 2\overline{GF}$$
يعني $\overline{EG} = 2\overline{EG} + 2\overline{GF}$ يعني

يعني
$$\overline{G}=-1\overline{EG}-2\overline{GF}=0$$
يعني $\overline{G}=-1\overline{EG}+2\overline{GF}=0$ يعني $\overline{G}=0$ مرجح النقطنين يعني $\overline{G}=0$

يعني G=E+2GF=0 يعني G=E+2GF=0 يعني مرجح النفطتين المنزنتين (F;2) و (F;2)

) الدينا Gمرجح النقطتين المتزنتين (A;2) و (B;-3) انن $G\in (AB)$

 $G \in (EF)$: و لدينا G مرجح النقطتين المتزنتين (E;-1) و (F;2) اذن (AB) اذن المستقيمين (EF) و (AB) لديهم نقطة مشتركة و غير منطبقين (لأن (EF) ع

وبالتاليُّ : المُستقيمين (EF) و (AB) يتقاطعان و G هي نقطة تقاطعهما

تمرين5نتكن A و B نقطتين مختلفتين من المستوى.

ولتكن I منتصف القطعة [AB] و G مرجح النقطتين G و G (B;-5)

- بحيث P من المستوى G بحيث

$$\|\overrightarrow{3MA} - 5\overrightarrow{MB}\| = \|\overrightarrow{MA} + \overrightarrow{MB}\|$$

$$\|\overrightarrow{3MA} - 5\overrightarrow{MB}\| = \|\overrightarrow{MA} + \overrightarrow{MB}\|$$
 الجواب:

مرجح النقطتين (A;3) و (B;-5) اذن حسب الخاصية المميزة للمرجح فان :

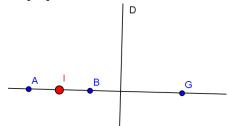
$$3\overrightarrow{MA} - 5\overrightarrow{MB} = (3 + (-5))\overrightarrow{MG} = -2\overrightarrow{MG}$$

I : و لدينا $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MI} + \overrightarrow{IA} + \overrightarrow{MI} + \overrightarrow{IB} = 2\overrightarrow{MI} + \overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IB}$ وبما أن

 $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$: منه $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$: فان

 $-2\overrightarrow{MG} = \|2\overrightarrow{MI}\|$ يعني $-2|\overrightarrow{MG}| = |2|\overrightarrow{MI}|$ يعني $-2|\overrightarrow{MG}| = |2|\overrightarrow{MI}|$ $\|3\overrightarrow{MA} - 5\overrightarrow{MB}\| = \|\overrightarrow{MA} + \overrightarrow{MB}\|$

MG=MI يعني 2MG=2MI=2 يعني وسط القطعة [GI]



II. إحداثيتي المرجح:

 $\left(B;b
ight)$ و لتكن $\left(A;a
ight)$ و لتكن المستوى منسوب إلى معلم معلم $\left(o,\vec{i},\vec{j}
ight)$ المستوى متزنتين من المستوى

إذا كان (B;b) و (A;a) فان إحداثيتي إذا كان (B;b)

$$\begin{cases} x_G = \frac{ax_A + bx_B}{a + b} : ba G \\ y_G = \frac{ay_A + by_B}{a + b} \end{cases}$$

ملاحظة : I منتصف القطعة [AB] يعني I مرجح النقطتين المتزنتين (B;1) و (A;1)

A(1;2): مثال: نعتبر النقطتين A(1;2): و اليكن B(-4;6) و النقطتين المتزنتين A(2;2): و A(3;2):

G أحسب إحداثيتى

$$G(6;-2)$$
 : اذن $\begin{cases} x_G = \frac{2 \times 1 + (-1) \times (-4)}{2 + (-1)} = \frac{6}{1} = 6 \\ y_G = \frac{2 \times 2 + (-1) \times 6}{2 + (-1)} = \frac{-2}{1} = -2 \end{cases}$

تمرين \hat{O} في المستوى منسوب إلى معلم متعامد ممنظم O(i.j) نعتبر النقطتين A(-2;5) و ليكن A(-2;5) و ليكن A(-2;5) و A(-2;5) و A(-2;5)

G أحسب إحداثيتي (1

2) حدد إحداثيتي النقطة H بحيث G مرجح النقطتين المتزنتين (2.1)

(O;3) $\mathcal{C}(H;1)$

رد (OB) بين أن : المستقيمين (AH) بين أن : المستقيمين (AH) بين أن :

$$G(1;2)$$
 : اذن $\begin{cases} x_G = \frac{1 \times (-2) + 3 \times 2}{3+1} = \frac{4}{4} = 1 \end{cases}$ اذن $\begin{cases} y_G = \frac{1 \times 5 + 3 \times 1}{3+1} = \frac{8}{4} = 2 \end{cases}$

: (0;3) عني ((H;1) عني مرجح النقطتين المتزنتين (H;1) و

$$\begin{cases} x_G = \frac{1 \times x_H + 3 \times x_O}{3+1} = 1 \\ y_G = \frac{1 \times y_H + 3 \times y_O}{3+1} = 2 \end{cases}$$

 $H\left(4;8
ight)$: نذن $\begin{cases} x_{H}=4 \ y_{H}=8 \end{cases}$ يعني $\begin{cases} \frac{x_{H}}{4}=1 \ y_{H}=2 \end{cases}$ اذن $O\left(0;0\right)$ لدينا $\left\{ \frac{y_{H}}{4}=2 \right\}$

 $\overline{OG} = \frac{1}{4}\overline{OH}$: يعني (O,3) و (H,1) المتزنتين المتزنتين

 $H\left(4;8\right)$: نن $\begin{cases} x_{H}=4 \ y_{H}=8 \end{cases}$ يعني $\frac{X_{H}}{4}=1$ يعني $\overline{OG}=\frac{1}{4}\overline{OH}$ $a\overline{M}\overline{A} + b\overline{M}\overline{B} + c\overline{M}\overline{C} = (a + b + c)\overline{M}\overline{G}$: $\overline{AH} = 3\overline{OB}$: اذن : نلاحظ أن $\overline{OB}(6;2)$ و $\overline{AH}(6;2)$

G تمكننا من رسم النقطة ومنه المستقيمين (AH) و (OB) متوازيان لأن المتجهتين :

و \overline{OB} مستقیمیتان \overline{AH}

 $\frac{1}{4}\overrightarrow{OH}\left(\frac{1}{4}x_H;\frac{1}{4}y_H\right)$ $\overrightarrow{OG}(1;2)$

 $(O; \dot{i}. \dot{j})$ نعتبر نصيفي المستوى منسوب إلى معلم متعامد ممنظم النقطتين :A(0;5) و ليكن G مرجح النقطتين المتزنتين (B;2) (A;1)

G أحسب إحداثيتى (1

2) حدد و أرسم مجموعة النقط M من المستوى P بحيث:

$$\left\| \overrightarrow{MA} + 2\overrightarrow{MB} \right\| = 6$$

$$G(2;3)$$
 : اذن :
$$\begin{cases} x_G = \frac{0+6}{3} = 2 \\ y_G = \frac{5+4}{3} = 3 \end{cases}$$

عني الخاصية $\left\| \overline{MA} + 2\overline{MB} \right\| = 6cm$ عني الخاصية $\left\| \overline{MA} + 2\overline{MB} \right\| = 6cm$ المميزة للمرجح

MG = 2cm يعني MG = 6cm يعني |MG| = 6cm يعني ومنه مجموعة النقط هي الدائرة (C) التي مركزها G وشعاعها

r = 2cm

مرجح ثلاث نقط متزنة:

خاصیة و تعریف

لتكن (A;a) و (B;b) و (C;c) ثلاث نقط متزنة من المستوى بحيث $a+b+c\neq 0$

 $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$: توجد نقطة وحيدة G من المستوى بحيث . (C;c) النقطة G تسمى مرجح النقط المتزنة (A;a) و (B;b)

(A;a) فان مرجح النقط المتزنة a=b=c فان مرجح النقط المتزنة (A;a) و

ABC يسمى كذلك مركز ثقل المثلث (C;c) و (B;b)

2. خاصيات مرجح ثلاث نقط متزنة

أ)الصمود:إذا كان \bar{G} مرجح النقط المتزنة (A;a) و (B;b)

فان لكل k من \mathbb{R}^* هي كذلك مرجح النقط المتزنة (C;c)

(C;kc) \circ (B;kb) \circ (A;ka)

ب)الخاصية المميزة:لتكن (A;a) و (B;b) و (B;b) ثلاث نقط من المستوى بحيث $a+b+c\neq 0$ ولتكن G نقطة من المستوى

مرجح النقط المتزنة (A;a)و (B;b)و و(C;c)إذاوفقط إذا لكل Gنقطة M من المستوى

استنتاج :بوضع : M = A في الخاصية المميزة نحصل على : و هذه العلاقة $\overrightarrow{AG} = \frac{b}{a+b+c} \overrightarrow{AB} + \frac{c}{a+b+c} \overrightarrow{AC}$

 $2\overline{AC}=3\overline{AG}-\overline{GB}$: نقطة بحيث G مثلثا و ABC مثلثا و مثلثا أو تمرينS: (C;2) و (B;1) و (A;1) بين أن G مرجح النقط المنزنة G و أنشئ النقطة

 $2\overline{AC} - 3\overline{AG} + \overline{GB} = \overline{0}$ يعني $2\overline{AC} = 3\overline{AG} - \overline{GB}$ $-\overline{AG}+\overline{GB}+2\overline{GC}=\overline{0}$ يعني $2(\overline{AG}+\overline{GC})-3\overline{AG}+\overline{GB}=\overline{0}$ يعني

 $\overline{GA} + \overline{GB} + 2\overline{GC} = \overline{0}$ يعنى

ومنه: G مرجح النقط المتزنة (A;1) و (B;1) و (C;2) $\overrightarrow{AG} = \frac{b}{a+b+c} \overrightarrow{AB} + \frac{c}{a+b+c} \overrightarrow{AC}$: وحسب العلاقة ® فان G ومنه رسم $\overline{AG} = \frac{1}{4}\overline{AB} + \frac{1}{2}\overline{AC}$ يعني $\overline{AG} = \frac{1}{4}\overline{AB} + \frac{2}{4}\overline{AC}$: أي

G و G و G ثلاث نقط من المستوى. و G مرجح تمرين G و G مرجح (C;1) و (B;-1) و (A;2)

 $E = \left\{ M \in P / \left\| 2\overline{MA} - \overline{MB} + \overline{MC} \right\| = 6cm \right\}$ حدد المجموعة:

حيث P هو المستوى.

الجواب : $\|2\overrightarrow{MG}\| = 6cm$ يعني $\|2\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}\| = 6cm$ حسب الخاصية المميزة للمرجح

MG = 3cm يعني 2MG = 6cm يعني $|2| | \overline{MG} | = 6cm$

r=3cm ومنه مجموعة النقط هي الدائرة (C) التي مركزها وشعاعها ج)تجميعية المرجح:

(C;c) و (B;b) و (A;a) ثلاث نقط من المستوى بحيث $a+b \neq 0$ و $a+b+c \neq 0$

H وكانت G مرجح النقط المتزنة (A;a) و (A;a) وكانت G(B;b) و (A;a) مرجح النقطتين المتزنتين

(C;c) فان G مرجح (H;a+b) و

[BC] مركز ثقل المثلث ABC و I منتصف القطعة G(I;2) و (A;1) بين أن G مرجح النقطتين

الجواب : G مركز ثقل المثلث ABC يعني G مرجح النقط (C;1) و(B;1)و (A;1)

(C;1) منتصف القطعة [BC] يعني I مرجح النقطتين Iوحسب خاصية تجميعية المرجح فان : G هو مرجح النقطتين : (A;1) و (I;1+1)

تمرين11: لتكن A و B و C و لاث نقط من المستوى. حدد مجموعة النقط من المستوى بحيث :

 $\left\| 2\overrightarrow{MA} - \overrightarrow{MB} + 3\overrightarrow{MC} - 5\overrightarrow{MD} \right\| = 5cm$

3. إحداثيتا مرجح ثلاث نقط

يدًا كان (C;c) مرجح النقط المتزنة (A;a) و (B;b) و النقط المتزنة المتزنة والنقط المتزنة المتزنة

$$\left\{ egin{aligned} x_G &= rac{ax_A + bx_B + cx_C}{a + b + c} : bas \ G
ight. \end{aligned}
ight.$$
 إحداثيتي $\left\{ egin{aligned} y_G &= rac{ay_A + by_B + cy_C}{a + b + c} \end{aligned}
ight.$

 $(O; \vec{i}. \vec{j})$ في المستوى منسوب إلى معلم متعامد ممنظم المستوى منسوب إلى معلم متعامد ممنظم

D(1;0) و C(1;-1) و B(0;2) و A(-1;1) : نعتبر النقط

- (B;3) و (A;2) حدد إحداثيتي K مرجح النقطتين المتزنتين المتزنتين (1
 - ABC مركز ثقل المثلث L حدد إحداثيتي (2
- (D;-1) و (C;1) و (B;3) و (A;2): مرجح النقط (3

$$K\left(-\frac{2}{5}; \frac{8}{5}\right)$$
 : اذن $\begin{cases} x_K = \frac{-2+0}{5} = \frac{-2}{5} \ (1 : \frac{2}{5}; \frac{8}{5}) \end{cases}$

A;1 مركز ثقل المثلث ABC يعني A مرجح النقط المتزنة ABC و B;1 و B;1

$$L\!\left(0;\frac{2}{3}\right): \dot{\cup}\dot{\cup} \begin{cases} x_L = \frac{1\times\left(-1\right)+1\times0+1\times1}{1+1+1} = 0 \\ y_L = \frac{1\times1+1\times2+1\times\left(-1\right)}{1+1+1} = \frac{2}{3} \end{cases} \underbrace{ \begin{cases} x_L = \frac{1x_A+1x_B+1x_C}{1+1+1} \\ y_L = \frac{1y_A+1y_B+1y_C}{1+1+1} \end{cases} }_{P_L}$$

$$\begin{cases} x_{G} = \frac{ax_{A} + bx_{B} + cx_{C} + dx_{D}}{a + b + c + d} \\ y_{G} = \frac{ay_{A} + by_{B} + cy_{C} + dy_{D}}{a + b + c + d} \end{cases}$$
(3)

$$G\left(-\frac{2}{5}; \frac{7}{5}\right)$$
 : اذن $\begin{cases} x_G = \frac{2 \times x_A + 3 \times x_B + 1 \times x_C + (-1) \times x_D}{5} = \frac{-2}{5} \end{cases}$ اذن $\begin{cases} x_G = \frac{2 \times y_A + 3 \times y_B + 1 \times y_C + (-1) \times y_D}{5} = \frac{7}{5} \end{cases}$

تمرین13:لتکن A و B و C ثلاث نقط من المستوى.

 $\overline{V} = 2\overline{MA} + \overline{MB} - 3\overline{MC}$: بحيث P من المستوى M

- M بين أن \overline{V} متجهة غير مرتبطة بالنقطة (1
- : نين أن يين أن (C;-3) لتكن K مرجح النقطتين المتزنتين K عرجح $V=2\overline{KA}$
- (C;-3) و (B;-1) و (A;2) اليكن: G مرجح النقط المتزنة

أ)بين أن : $\overline{MB} - 3\overline{MC} = 2\overline{GM}$ لكل نقطة M من المستوى ب)ستنتج مجموعة النقط M من المستوى بحيث :

 $\|2\overrightarrow{MA} - \overrightarrow{MB} - 3\overrightarrow{MC}\| = \|2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC}\|$

 $\overline{V} = 2\overline{MA} + \overline{MB} - 3\overline{MC} = 2\overline{MA} + \overline{MA} + \overline{AB} - 3(\overline{MA} + \overline{AC})$ (1 : الأجوبة

M ومنه \overline{V} متجهة غير مرتبطة بالنقطة \overline{V}

2) وجدناM من المستوى $2\overline{MA}+\overline{MB}-3\overline{MC}=\overline{AB}-3\overline{AC}$ مهما تكن M من المستوى يمكننا مثلا وضع $M=K=2\overline{KA}+\overline{KB}-3\overline{KC}=\overline{AB}-3\overline{AC}$ ونعلم أن M=K=1 مرجح النقطتين المتزنتين M=1 و M=1 اذن :

 $\overline{KB} - 3\overline{KC} = \overline{0}$

 $2\overline{KA} = \overline{V}$: أي $2\overline{KA} = \overline{AB} - 3\overline{AC}$ ومنه نجد

3)أ) حسب الخاصية المميزة للمرجح:

 $2\overline{MA} - \overline{MB} - 3\overline{MC} = (2 + (-1) + (-3))\overline{MG} = -2\overline{MG} = 2\overline{GM}$

$$\|2\overrightarrow{GM}\| = \|2\overrightarrow{KA}\|$$
 ينعني $\|2\overrightarrow{MA} - \overrightarrow{MB} - 3\overrightarrow{MC}\| = \|2\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC}\|$ (9)

GM = KA تعني 2GM = 2KA تعني ومنه مجموعة النقط هي الدائرة G التي مركز ها G وشعاعها r - KA

(C;1) و (A;-2) تمرين (C;-1) يكن (C;-1) مثلثا و (B;-3) و (C;-1) ثم مرجح النقطتين (C;-1) و (B;-3) و (B;3)

 $\overline{BC'} = -\frac{1}{2}\overline{BC}$ و $\overline{AA'} = 3\overline{AB}$ و $\overline{AB'} = -\overline{AC}$: بين أن

 $\overline{B'A'} + 2\overline{A'C'} = \overline{0}$: بين أن (2

: استنتج أنه مهما تكن $\,M\,$ نقطة من المستوى فان $\,3\,$

 $-\overline{MA'} - \overline{MB'} + 2\overline{MC'} = \overline{0}$

استنتج أن النقط A' و B' و A' مستقيمية.

(C;1)و (A;-2) الأجوبة: B' (1 مرجح النقطتين

 $\overrightarrow{AB'} = \frac{1}{1+(-2)} \overrightarrow{AC} = -\overrightarrow{AC}$: اذن

 $\overline{AA'} = \frac{-3}{-3+2}\overline{AB} = 3\overline{AB}$: اذن (B;-3) و (A;2) مرجح النقطتين (B;-3) و (B;-3) و (B;-3) و (C;-1) مرجح النقطتين (B;3) و (C;-1)

 $\overline{B'A'} + 2\overline{A'C'} = \overline{B'A} + \overline{AA'} + 2(\overline{A'B} + \overline{BC'}) = \overline{AA'} - \overline{AB'} + 2\overline{BC'} - 2\overline{BA'}$

$$\overline{B'A'} + 2\overline{A'C'} = 3\overline{AB} + \overline{AC} - 2 \times \frac{1}{2}\overline{BC} - 2\left(\overline{BA} + \overline{AA'}\right)$$

 $\overline{B'A'} + 2\overline{A'C'} = 3\overline{AB} + \overline{AC} - \overline{BC} + 2\overline{AB} - 6\overline{AB} = -\overline{AB} + \overline{AC} - \overline{BC}$ $\overline{B'A'} + 2\overline{A'C'} = \overline{BA} + \overline{AC} + \overline{CB} = \overline{BB} = 0$

 $-\overline{MA'} - \overline{MB'} + 2\overline{MC'} = -\overline{MA'} - (\overline{MA'} + \overline{A'B'}) + 2(\overline{MA'} + \overline{A'C'})$ (3)

 $-\overline{MA'} - \overline{MB'} + 2\overline{MC'} = -\overline{A'B'} + 2\overline{A'C'} = \overline{B'A'} + 2\overline{A'C'} = 0$

4) وجدنا أن : مهما تكن M نقطة من المستوى

 $-\overline{MA'} - \overline{MB'} + 2\overline{MC'} = \overline{0}$: فأن

M = A': بوضع مثلا

 $2\overline{A'C'} = \overline{A'B'}$ نجد : $0 = \overline{A'A'} - \overline{A'B'} + 2\overline{A'C'} = 0$ نجد

وهذا يعني أن : النقط A' و B' و مستقيمية.

تمرين:15:

(A;1) ليكن I مرجح النقطتين (A;2) و (C;1) و (A;2) مرجح النقطتين (B;-4) و (C;1) مرجح النقطتين (B;2)

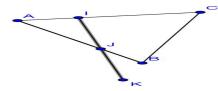
K و J و النقط ا

(C;1) و (K;3) و اثبت أن B مرجح النقطتين (2

[KI] بين أن J منتصف (3

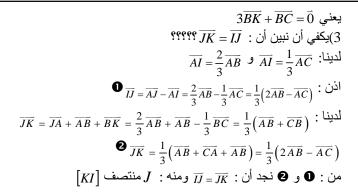
 $\overline{AI} = \frac{1}{3}\overline{AC}$: الأجوية (C;1) و (A;2) النت I (1 مرجح النقطتين الأجوية الأجوية المرجح النقطتين المرجح المر

 $\overline{AJ} = \frac{2}{3}\overline{AB}$: اذن (B;2) و (A;1) مرجح النقطتين J



 $\overline{BK} = -\frac{1}{3}\overline{BC}$: اذن (B;-4) و (C;1) مرجح النقطتين (C;1) مرجح النقطتين أن $\overline{BK} = \overline{BC} = \overline{0}$

 $3\overline{BK} = -\overline{BC}$ يعني $\overline{BK} = -\frac{1}{3}\overline{BC}$ بما أن لدينا



ملاحظات عامة حول درس المرجح:

ص 21 http:// xyzmath.e-monsite.com

أكاديمية الجهة الشرقية نيابة وجدة

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مدكرة رقم / 4

مذكرة رقو4 في حرس تعليلية الجداء السلمي وتطبيقاته الأهداف القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
500000000000000000000000000000000000000	- التعبير عن توازي وتعامد مستقيمين؛	3.1. الصيغة التحليلية للجداء السلمي في معلم
	- حساب قياسات زوايا ومساحات باستعمال	متعامد ممنظم:
	الجداء السلمي.	- الصيغة التحليلية لمنظم متجهة ولمسافة نقطتين؛
	5453	$-$ صيغة θ وصيغة θ د د د د د د د د د د د د د د د د د د د
		3.2. المستقيم في المستوى (دراسة تحليلية):
		- المتجهة المنظمية لمستقيم؛
		_ معادلة ديكارتية لمستقيم محدد بنقطة ومتجهة
- تعتبر الدراسة التحليلية لدائرة مجالا خصبا	M11 191 M11	منظمية له؛
لتوظيف تحليلية الجداء السلمي خاصة منها	_ التعرف على مجموعة النقط من المستوى	ـ مسافة نقطة عن مستقيم.
تلك المتعلقة بالمسافة والتعامد، لذا ينبغي	$\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ التي تحقق العلاقة:	3.3. الدائرة (دراسة تحليلية)
الحرص على إبراز دور الطريقة التحليلية	- تحديد مركز وشعاع دائرة معرفة بمعادلتها	- معادلة ديكارتية لدائرة؛
في حل بعض المسائل الهندسية.	الديكارتية؛	- تمثيل بار اميتري لدائرة؛
ـ ينبغي استعمال الجداء السلمي في تحديد	_ المرور من معادلة ديكارتية إلى تمثيل	 دراسة مجموعة النقط:
معادلة ديكارتية لدائرة؛	بار امتري و العكس؛	$\{M(x;y)/x^2 + y^2 + ax + by + c = 0\}$
ـ يتم التطرق من خلال أنشطة إلى دائرة	_ استعمال تحليلية الجداء السلمي في حل	- دراسة الأوضاع النسبية لدائرة ومستقيم؟
محددة بثلاث نقط غير مستقيمية؛	مسائل هندسية وجبرية.	- معادلة ديكار تية لمستقيم مماس لدائرة في نقطة
- يتم بهذه المناسبة، استغلال التجويه التحليلي		معلومة من الدائرة.
للمستوى لتقديم نماذج للحل المبياني لبعض		
المتر اجحات غير الخطية بمجهولين.		

I. الصيغة التحليلية للجداء السلمي في معلم متعامد ممنظم

1. الصيغة التحليلية للجداء السلمي في معلم متعامد ممنظم تعاريف: ليكن (\vec{i},\vec{j}) أساسا في المستوى و O نقطة من المستوى

• نقول إن (\vec{i},\vec{j}) أساس متعامد ممنظم إذا كان :

 $\vec{i}.\vec{j} = 0$ 9 $\|\vec{j}\| = 1$ 9 $\|\vec{i}\| = 1$

• (i; j) المعلم (i; j) متعامد ممنظم إذا كان (i; j) أساسا متعامدا ممنظما

و إذا كان $(\vec{i}; \vec{j})$ أساس متعامد ممنظم و $[2\pi]$ $\frac{\pi}{2}$ القول إن $(\vec{i}; \vec{j})$ معلم متعامد ممنظم و مباشر $(0; \vec{i}; \vec{j})$

دائما في جميع فقرات الدرس ننسب المستوى إلى معلم متعامد ممنظم ومباشر $(0; \vec{i}; \vec{j})$

نشاط : لتكن $\vec{i} = x\vec{i} + y'\vec{j}$ عند $\vec{i} = x\vec{i} + y'\vec{j}$ معلم نشاط : نشاط التكن $\vec{i} = x\vec{i} + y'\vec{j}$ عند معلم

 $\overrightarrow{u.v}$: متعامد ممنظم ومباشر أحسب

الجواب:

 $\vec{u} \cdot \vec{v} = \left(x\vec{i} + y\vec{j}\right)\left(x'\vec{i} + y'\vec{j}\right) = xx'\vec{i} \cdot \vec{i} + xy'\vec{i} \cdot \vec{j} + yx'\vec{j} \cdot \vec{i} + yy'\vec{j} \cdot \vec{j}$ $\vec{j} \cdot \vec{j} = \|\vec{j}\| \times \|\vec{j}\| \times \cos 0 = 1 \times 1 \times 1 = 1 \quad \text{9} \quad \vec{i} \cdot \vec{i} = \|\vec{i}\| \times \|\vec{j}\| \times \cos 0 = 1 \times 1 \times 1 = 1$ $\vec{u} \cdot \vec{v} = xx' + yy' \quad : \quad \vec{i} \cdot \vec{j} = \|\vec{i}\| \times \|\vec{j}\| \times \cos \frac{\pi}{2} = 1 \times 1 \times 0 = 0$

خاصية 1: التكن $\vec{v}=x'\vec{i}+y'\vec{j}$ و $\vec{u}=x\vec{i}+y\vec{j}$ متجهتين من المستوى $\vec{u}.\vec{v}=xx'+yy'$. لدينا ,

خاصية 2:تكون المتجهتان $\vec{v}=x'\vec{i}+y'\vec{j}$ و $\vec{u}=x\vec{i}+y\vec{j}$ متعامدتين إذا وفقط إذا كان : $\vec{u}.\vec{v}=xx'+yy'$: وفقط إذا كان

مثال نعتبر المتجهات

 $\overrightarrow{w} = 5\overrightarrow{i} + 3\overrightarrow{j}$ $\overrightarrow{v} = 2\overrightarrow{i} - \overrightarrow{j}$ $\overrightarrow{v} = \overrightarrow{i} + 2\overrightarrow{j}$

 \overrightarrow{uw} و \overrightarrow{vw} و \overrightarrow{uv} : أحسب الجداءات السلمية التالية

 $\vec{u} \perp \vec{v}$: اذن $\vec{u} \cdot \vec{v} = 1 \times 2 + 2 \times (-1) = 0$

 $\vec{u}.\vec{w} = 1 \times 5 + 3 \times 2 = 11$ $\vec{v}.\vec{w} = 2 \times 5 + 3 \times (-1) = 7$

المتجهتان $\vec{v}(2-m;5)$ و $\vec{u}(3;-1+m)$ متعامدتین

 $3(2-m)+5\times(-1+m)=0$ يعني $\vec{u}.\vec{v}=0$ يعني $\vec{u}\perp\vec{v}$

 $m = -\frac{1}{2}$ يعني 2m+1=0 يعني 6-3m-5+5m=0

تمرین2:حدد قیمة العدد الحقیقي m لکي تکون المتجهتان $\vec{v}\left(2-m;\frac{1}{2}\right)$ و $\vec{u}\left(-1+m;2\right)$ متعامدتین

 $(2 - m, \frac{1}{2})$ $(2 - m, \frac{1}{2})$

 $(-1+m)(2-m)+2\times\frac{1}{2}=0$ يعني $\vec{u}.\vec{v}=0$ يعني $\vec{u}\perp\vec{v}$ $\vec{v}\perp\vec{v}$ \vec{v} $-m^2+3m-1=0$ يعني $-2+m+2m-m^2+1=0$

يعني $m^2 - 3m + 1 = 0$ يعني $m^2 - 3m + 1 = 0$ يعني $\Delta = 5$ ومنه للمعادلة حلين هما : $\frac{3 - \sqrt{5}}{2}$ و منه للمعادلة حلين هما : $\frac{3 - \sqrt{5}}{2}$

2. الصيغة التحليلية لمنظم متجهة والمسافة بين نقطتين (a) منظم متجهة:

 \vec{u} المستوى, منظم المتجهة من المستوى منظم المتجهة نرمز له بالرمز $\|\vec{u}\|$ و $\sqrt{x^2+y^2}$

b) المسافة بين نقطتين:

تمرين5: نعتبر في المستوى المتجهي المتجهتين التاليتين: $\vec{v}(-2;0) \ \vec{u}(-1;-1)$ $\sin\left(\widehat{u};\widehat{v}\right)$ $\cos\left(\widehat{u};\widehat{v}\right)$: 1 $(\widehat{u},\widehat{v})$ استنتج قياسا للزاوية الموجهة .2 $\cos\left(\widehat{u,v}\right) = \frac{2}{\sqrt{2} \times 2} = \frac{\sqrt{2}}{2} \Leftrightarrow \cos\left(\widehat{u,v}\right) = \frac{\widehat{u} \cdot \widehat{v}}{\|\widehat{u}\| \times \|\widehat{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + v'^2}}$ (1) $\sin\left(\widehat{u,v}\right) = \frac{-2}{\sqrt{2} \times 2} = -\frac{\sqrt{2}}{2} \Leftrightarrow \sin\left(\widehat{u,v}\right) = \frac{\begin{vmatrix} -1 & -2 \\ -1 & 0 \end{vmatrix}}{\sqrt{2} \times 2}$ $\sin(\widehat{u,v}) = -\frac{\sqrt{2}}{2} = -\sin\frac{\pi}{4} = \sin(-\frac{\pi}{4})$ و $\cos(\widehat{u,v}) = \frac{\sqrt{2}}{2} = \cos\frac{\pi}{4}$ کدینا (2) $(\widehat{u},\widehat{v})$ هو قياس للزاوية الموجهة $-\frac{\pi}{t}$ تمرين 6: نعتبر في المستوى النقط التالية: C(1;3) $\ni B(1;1) \ni A(3;3)$ $\sin\left(\widehat{AB;AC}\right) \circ \cos\left(\widehat{AB;AC}\right) : 1$ $(\widehat{AB;AC})$ استنتج قياسا للزاوية الموجهة $\cos\left(\widehat{\overrightarrow{AB};\overrightarrow{AC}}\right) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left\|\overrightarrow{AB}\right\| \times \left\|\overrightarrow{AC}\right\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}} \quad (1 : \frac{1}{\sqrt{x^2 + y^2}})$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = 4$: each $\overrightarrow{AC}(-2,0)$ $\overrightarrow{AB}(-2,-2)$ $\cos\left(\widehat{\overline{AB};AC}\right) = \frac{\overline{AB} \cdot \overline{AC}}{\|\overline{AB}\| \times \|\overline{AC}\|} = \frac{4}{\sqrt{8} \times \sqrt{4}} = \frac{4}{2\sqrt{2} \times 2} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\sin\left(\widehat{\overrightarrow{AB};\overrightarrow{AC}}\right) = \frac{-4}{2\sqrt{2}\times2} = -\frac{\sqrt{2}}{2} \Leftrightarrow \sin\left(\widehat{\overrightarrow{AB};\overrightarrow{AC}}\right) = \begin{vmatrix} -2 & 0 \\ 2\sqrt{2}\times2 \end{vmatrix}$ $\cos\left(\widehat{AB}; \widehat{AC}\right) = \frac{\sqrt{2}}{2} = \cos\frac{\pi}{4}$ Legis (2) $\sin\left(\widehat{AB};\widehat{AC}\right) = -\frac{\sqrt{2}}{2} = -\sin\frac{\pi}{4} = \sin\left(-\frac{\pi}{4}\right)$ $\widehat{\overline{AB}};\widehat{\overline{AC}}$ ومنه π هو قياس للزاوية الموجهة تمرين7: نعتبر في المستوى النقط التالية: C(-2;-1) \mathcal{S} B(0;5) A(4;1)BC و AC و AB المسافات: ABثم استنتج طبيعة المثلث ABC $\overrightarrow{AB} \bullet \overrightarrow{AC}$: أحسب. $\cos(\widehat{BAC}) = \frac{1}{\sqrt{5}}$: i.i. 3 $\sin(\widehat{BAC}) = \frac{2\sqrt{5}}{5}$: $\det(\overline{AB}; \overline{AC})$ $\det(\overline{AB}; \overline{AC})$ $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(-4)^2 + (4)^2} = \sqrt{32} = 4\sqrt{2}$ (1) الأجوبة: $AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(-6)^2 + (-2)^2} = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10}$ $BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(-2)^2 + (-6)^2} = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10}$ ومنه : ABC ومنه ABC متساوي الساقين $\overrightarrow{AB} \cdot \overrightarrow{AC} = 24 - 8 = 16$: $\overrightarrow{AC}(-6, -2)$ $\overrightarrow{AB}(-4, 4)$ (2) $\cos\left(\widehat{\mathit{BAC}}\right) = \frac{\overrightarrow{\mathit{AB}} \cdot \overrightarrow{\mathit{AC}}}{\left\|\overrightarrow{\mathit{AB}}\right\| \times \left\|\overrightarrow{\mathit{AC}}\right\|} = \frac{16}{\sqrt{32} \times \sqrt{40}} = \frac{16}{4\sqrt{2} \times 2\sqrt{10}} = \frac{2}{\sqrt{20}} = \frac{2\sqrt{20}}{20} = \frac{\sqrt{20}}{10} \quad (3)$ $\det\left(\overline{AB}; \overline{AC}\right) = \begin{vmatrix} -4 & -6 \\ 4 & -2 \end{vmatrix} = 32 \quad (4$

| نقطتین من المستوی , المسافة هي $B(x_{\scriptscriptstyle B};y_{\scriptscriptstyle B})$ و $A(x_{\scriptscriptstyle A};y_{\scriptscriptstyle A})$ $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ $\|\overrightarrow{AB}\| = AB$: all and a مثال أو تمرين3: نعتبر في المستوى النقط التالية: $\vec{u}(\sqrt{5};-2)$ والمتجهة C(2;-3) و $B(3;\sqrt{5})$ A(-1;3) $\overrightarrow{AB} \cdot \overrightarrow{CB} : \overrightarrow{u} = 0$ $\overrightarrow{AC} \cdot \overrightarrow{u} = 0$ 3) ماذا تستنتج بالنسبة للمثلث (3 $AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(2+1)^2 + (-3-3)^2} = \sqrt{9+36} = \sqrt{45}$ (1) $\|\vec{u}\| = \sqrt{(\sqrt{5})^2 + (-2)^2} = \sqrt{5+4} = \sqrt{9} = 3$ $\overrightarrow{AB}(4;\sqrt{5}-3)$ يعني $\overrightarrow{AB}(3-(-1);\sqrt{5}-3)$ (2 $\overrightarrow{CB}(1;\sqrt{5}+3)$ يعني $\overrightarrow{CB}(3-2;\sqrt{5}+3)$ $\overrightarrow{AB} \cdot \overrightarrow{CB} = 1 \times 4 + (\sqrt{5} - 3)(\sqrt{5} + 3) = 4 + ((\sqrt{5})^2 - 3^2) = 0$ B نستنتج أن المثلث ABC قائم الزاوية في A تمرينA:نعتبر في المستوى النقط التالية A $B\left(-\frac{1}{2};0\right)$ $E\left(1;-1\right)$ $D\left(\frac{5}{2};-2\right)$ $\mathcal{G}\left(-1;-4\right)\mathcal{G}$ E قائم الزاوية في النقطة ABE .1. 2. بين أن الرباعي ABCD معين (يكفى أن نبين أن ABCD متوازي الأضلاع وضلعين متتابعين متقايسين أو نبين أن القطرين متعامدين) $\overrightarrow{AE} \cdot \overrightarrow{EB} = 0$: الأجوبة: 1) يكفى أن نبين أن $\overrightarrow{AE} \perp \overrightarrow{EB}$ أي نبين أن $\overrightarrow{EB}\left(-\frac{3}{2};1\right)$ $\overrightarrow{AE}\left(-2;-3\right)$ ومنه $\overrightarrow{AE} \perp \overrightarrow{EB} = 3 - 3 = 0$ ومنه $\overrightarrow{AE} \perp \overrightarrow{EB} = 3 - 3 = 0$ 2) <u>طريقة 1:</u> نبين أن_ _{ABCD} متوازي الأضلاع وضلعين متتابعين $\overrightarrow{AB} = \overrightarrow{DC}$: اذن $\overrightarrow{AB}\left(-\frac{7}{2};-2\right)$ و $\overrightarrow{DC}\left(-\frac{7}{2};-2\right)$ اذن ومنه : $_{ABCD}$ متوازي الأضلاع $BC = \sqrt{\frac{1}{4} + 16} = \sqrt{\frac{65}{4}}$ و $AC = \sqrt{\left(\frac{7}{2}\right)^2 + \left(1 - 1\right)^2} = \sqrt{\frac{49}{4} + 4} = \sqrt{\frac{65}{4}}$: ولدينا كذلك : اذن : AB = BC ومنه : ABCD معين طريقة <u>2</u>: نبين أن القطرين متعامدين $\overrightarrow{BD}(3;-2)$ و $\overrightarrow{AC}(-4;-6)$: لدينا $AC \cdot BD = -12 + 12 = 0$ اذن ومنه: $\overrightarrow{AC} \perp \overrightarrow{BD}$ وبالتالي: $\overrightarrow{AC} \perp \overrightarrow{BD}$ معين c) صيغة cos و sin: لتكن $\vec{v} = x'\vec{i} + y'\vec{j}$ و $\vec{u} = x\vec{i} + y\vec{j}$ متجهتین غیر منعدمتین من $(\vec{u}; \vec{v})$ المستوى و θ قياسا للزاوية الموجهة $\sin(\widehat{u;v}) = \frac{\det(\overline{u},\overline{v})}{\|\overline{u}\| \times \|\overline{v}\|} = \frac{xy' - yx'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}$ $\cos\left(\widehat{u;v}\right) = \frac{\overrightarrow{u\cdot v}}{\|\overrightarrow{u}\| \times \|\overrightarrow{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}$

ص 23

```
I\left(\frac{-1}{2},\frac{5}{2}\right) يعني I\left(\frac{x_A+x_B}{2},\frac{y_A+y_B}{2}\right)
                   : يعنى المعادلة يعنى ينان المعادلة يعنى ينان المعادلة يعنى المعادلة يعنى ينان المعادلة يعنى
(D)/-3x+y-4=0: c=-4\Leftrightarrow \frac{3}{2}+\frac{5}{2}+c=0\Leftrightarrow -3\left(-\frac{1}{2}\right)+\frac{5}{2}+c=0
             A ارتفاع المثلث ABC المثلث (2) ارتفاع المثلث
                   A يعني (\Delta) عمودي على على على (BC) يعني
                       (\Delta) ومنه : \overrightarrow{BC}(2,1) متجهة منظميه على
                          نعلم أن معادلة مستقيم تكتب على الشكل:
    (\Delta) و \overrightarrow{BC}(a,b) متجهة منظمیه علی (D) متجهة منظمیه علی
    (\Delta)/2x+y+c=0 : قصبح عادلة تصبح a=2;b=1
      ونعلم أن : A \in (\Delta) اذن احداثيات A تحقق المعادلة يعني :
        (\Delta)/2x + y - 4 = 0: ومنه c = -4 \Leftrightarrow 2 \times 1 + 2 + c = 0
                          تمرين 9: نعتبر في المستوى النقط التالية:
                          C(3;5) B(-2;0) A(1;1)
                [AC] واسط القطعة [AC] عدد معادلة المستقيم
 C معادلة (\Delta) ارتفاع المثلث ABC و المار من النقطة .2
             الجواب: 1) واسط القطعة [AC] هو مستقيم عمودي
                   [AC] على (AC)ويمر من I منتصف القطعة
                         نعلم أن معادلة مستقيم تكتب على الشكل:
     (D) على متجهة منظميه على \overline{AC}(a,b) و \overline{AC}(a,b)
  a=2;b=4: فلاينا على متجهة منظميه على متجهة متجهة منظميه على ولدينا
                       (D)/2x+4y+c=0: ومنه المعادلة تصبح
                 I ونعلم أن : I \in (D) علينا أو لا حساب احداثيات
                                I(2,3) يعني I\left(\frac{x_A + x_C}{2}, \frac{y_A + y_C}{2}\right)
                   : يعني المعادلة يعني المعادلة يعني إ
                                  c = -16 \Leftrightarrow 2 \times 2 + 4 \times 3 + c = 0
                                      (D)/2x+4y-16=0:
             C ارتفاع المثلث ABC و المار من النقطة (\Delta) (2
                  C يعني (\Delta) عمودي على على على (\Delta) ويمر من
                    (\Delta) على منجهة منظميه على \overline{AB}(-3,-1) ومنه:
                          نعلم أن معادلة مستقيم تكتب على الشكل:
    (\Delta) و \overrightarrow{AB}(a,b) متجهة منظميه على (D) (ax+by+c=0)
(\Delta)/-3x-y+c=0 : اذنa=-3;b=-1 ومنه المعادلة تصبح
      ونعلم أن : C \in (\Delta) اذن احداثيات Cتحقق المعادلة يعني
        (\Delta)/-3x-y+14=0 : ومنه c=14 \Leftrightarrow -9-5+c=0
                                               3. تعامد مستقيمين:
                  خاصیة:ایکن (D) و (D') مستقیمین معادلاتهما
             a'x + b'y + c' = 0 ext{ } ax + by + c = 0 : ext{ } ax + by + c = 0
       يكون المستقيمان (D') و (D') متعامدين إذا وفقط إذا كانت
       aa' + bb' = 0 : متجهتا هما المنظميتان عليهما متعامدتان أي
                         تمرين<u>10</u>: نعتبر في المستوى المستقيمين:
```

(D'): $\frac{3}{2}x - y + 4 = 0$ (D): 2x + 3y - 1 = 0

(D') و (D') متعامدین ؟

 $\sin\left(\widehat{\overrightarrow{AB};\overrightarrow{AC}}\right) = \frac{32}{8\sqrt{20}} = \frac{32\sqrt{20}}{160} = \frac{2\sqrt{5}}{5} \Leftrightarrow \sin\left(\widehat{\overrightarrow{AB};\overrightarrow{AC}}\right) = \frac{\left|4\right| - 2\sqrt{5}}{8\sqrt{20}}$ II. المستقيم في المستوى (دراسة تحليلية) 1. متجهة منظميه على مستقيم في المستوى تعریف :لیکن (D) مستقیم فی المستوی نسمى متجهة منظميه على المستقيم (D), كل متجهة غير منعدمة (D) ومتعامدة مع متجهة موجهة للمستقيم $\vec{n}(a,b)$: هي: المستقيم (D) متجهة منظمية على المستقيم (D) متجهة منظمية أمثلة :أعط متجهة منظميه على المستقيم (D) في كل حالة من الحالات التالية : (D): x-1=0 (2 (D): x-2y+5=0 (1 (D):2y-3=0 (3) $\vec{n}(a;b)$: هي (D) ax+by+c=0 متجهة منظمية على المستقيم (D) منجهة منظميه على $\vec{n}(2;1)$ منجهة منظميه على (1 (D) متجهة منظميه على $\vec{n}(-2;0)$ (D):0x+2y-3=0 (2 (D) متجهة منظمیه علی $\vec{n}(0;1)$ (D):1x+0y-1=0 (3 2. معادلة مستقيم معرف بنقطة ومتجهة منظمية: $\vec{n}(a;b)$ و $A(x_A;y_A)$ ف النقطة (D) المار من النقطة فصية:معادلة المستقيم $a(x-x_A)+b(y-y_A)=0$: متجهة منظميه عليه هي مثال عدد معادلة المستقيم A(1;2) المار من النقطة A(1;2) و متجهة منظمیه علیه $\overrightarrow{n}(2;-3)$ الجواب: (هناك طريقتين يمكن استعمالهما) $\overrightarrow{AM} \cdot \overrightarrow{n} = 0 \Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{n} \Leftrightarrow M(x; y) \in (D)$ طریقة 1: $\vec{n}(2;-3)$ و $\overrightarrow{AM}(x-1,y-2)$ $(D)/2x-3y+4=0 \Leftrightarrow 2(x-1)-3(y-2)=0 \Leftrightarrow$ طريقة 2: نعلم أن معادلة مستقيم تكتب على الشكل: علیه علیه منظمیه علیه $\vec{n}(a;b)$ و (D)/ax+by+c=0(D) نعلم أن (2;-3) متجهة منظميه على (D)/2x-3y+c=0 : ومنه المعادلة تصبح a=2;b=-3ونعلم أن : $A(1;2) \in (D)$ اذن احداثياته تحقق المعادلة يعني (D)/2x-3y+4=0 : ومنه c=4 يعنى $2\times 1-3\times 2+c=0$ تمرين 8: نعتبر في المستوى النقط التالية: C(0;4) $\mathcal{G}(0;4)$ $\mathcal{G}(0;4)$ [AB] حدد معادلة المستقيم (D) واسط القطعة A و المار من النقطة (Δ) من النقطة المثلث عدد معادلة (Δ) الرتفاع المثلث عدد معادلة المثلث عدد معادلة المثلث المثلث عدد معادلة المثلث ال الجواب: 1) واسط القطعة [AB] هو مستقيم عمودي [AB] على (AB)ويمر من المنتصف القطعة نعلم أن معادلة مستقيم تكتب على الشكل: (D) و (D)/ax+by+c=0a=-3;b=1 : ولدينا على متجهة منظميه على متجهة $\overrightarrow{AB}(-3,1)$ (D)/-3x+y+c=0: صبح قصبح I ونعلم أن $I \in (D)$ علينا أولا حساب احداثيات

c=-7 ولدينا $A\in (AB)$ اذن $A\in (AB)$ ا (AB)/5x-4y-7=0: : الدينا O(0.0) الذن (2 $d(O(AB)) = \frac{|5 \times 0 - 4 \times 0 - 7|}{\sqrt{5^2 + (-4)^2}} = \frac{|-7|}{\sqrt{41}} = \frac{7}{\sqrt{41}} = \frac{7\sqrt{41}}{41}$: اذن d(O;(AB)) = OH اذن (3 $S_{ABC} = \frac{AB \times OH}{2} = \frac{\sqrt{4^2 + (-5)^2}}{2} \times \frac{7}{\sqrt{41}} = \frac{\sqrt{41}}{2} \times \frac{7}{\sqrt{41}} = \frac{7}{2}$ 4) نحدد أو لا معادلة ديكارتية للمستقيم (OH): (OH) على متجهة منظمية على $\overline{AB}(4.5)$ (OH)/4x+5y+c=0 اذن: c=0 ولدينا $O \in (OH)$ اذن $O \in (OH)$ ولدينا (OH)/4x+5y=0: هي نقطة تقاطع (OH)و (AB) اذن احداثيات H: نستعمل طريقة المحددات لحل هذه النظمة أنستعمل طريقة المحددات لحل هذه النظمة أ5x-4y=7 $\Delta = \begin{vmatrix} 4 & 5 \\ 5 & -4 \end{vmatrix} = -41 \neq 0$ هي: (1) هي: (1) $x = \frac{\begin{vmatrix} 0 & 5 \\ 7 & -4 \end{vmatrix}}{\begin{vmatrix} -4 \end{vmatrix}} = \frac{-35}{-41} = \frac{35}{41}$ و منه النظمة تقبل حلا وحيدا: هو $H\left(\frac{35}{41}; -\frac{28}{41}\right)$: $y = \frac{\begin{vmatrix} 4 & 0 \\ 5 & 7 \end{vmatrix}}{\Lambda} = \frac{28}{-41} = \frac{28}{41}$... معادلة ديكارتية لدائرة 1. معادلة دائرة معرفة بمركزها و شعاعها $\Omega(a;b)$ التي مركزها (C) خاصية:معادلة الدائرة $(x-a)^2 + (y-b)^2 = R^2$: هي (R > 0) R وشعاعها $c=a^2+b^2-R^2$: حيث $x^2+y^2-2ax-2by+c=0$ مثال: حدد معادلة ديكارتية للدائرة (C) التي مركزها $R=\sqrt{2}$ وشعاعها A(-1;-3) $(C)(x-(-1))^2+(y+3)^2=(\sqrt{2})^2$: الجواب يمكننا الاكتفاء بهذه الكتابة (C) $x^2 + y^2 + 2x + 6y + 8 = 0$: أو النشر فنجد مثال(C) التي مركزها مثال عادله ديكارتية للدائرة A(1;4) وتمر من النقطة $\Omega(-2;1)$ $R = \Omega A$: هو الدائرة هو العام هغاع هذه الدائرة $R = \Omega A = \sqrt{(x_A - x_\Omega)^2 + (y_A - y_\Omega)^2} = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$ $(C)(x-(-2))^2+(y-1)^2=(3\sqrt{2})^2$ ومنه معادلة الدائرة هي: 2 يمكننا الاكتفاء بهذه الكتابة (C) $x^2+y^2+4x-2y-13=0$: أو النشر فنجد $x^{2}+y^{2}+ax+by+c=0$: وتكتب على الشكل

الأستاذ: عثماني نجيب

(D) متجهة منظميه على $\vec{n}(2;3)$ (D') متجهة منظميه على $\overrightarrow{n'}\left(\frac{3}{2};-1\right)$ $\vec{n} \perp \vec{n'}$ ومنه $\vec{n} \cdot \vec{n'} = 2 \times \frac{3}{2} + 3 \times (-1) = 3 - 3 = 0$ $(D) \perp (D')$: وبالتالي 4. مسافة نقطة عن مستقيم و ax + by + c = 0 : مستقیما معادلته (D) تعریف الیکن نقطة من المستوى. $A(x_A; y_A)$ $d\left(A;\left(D\right)\right)=rac{\left|ax_{A}+by_{A}+c
ight|}{\sqrt{a^{2}+b^{2}}}$: هي $\left(D\right)$ هي A عن المستقيم عن A عن A(1;4) عن A(1;4) عن عن عن A(1;4)(D)المستقيم $d(A;(D)) = \frac{|1-4+2|}{\sqrt{1^2+(-1)^2}} = \frac{|-1|}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ (D) و المستقيم (A (-1;-3) و المستقيم (A و المستقيم (Ax+2y-3=0: الذي معادلته (D) عن المستقيم A2. حدد زوج إحداثيتي النقطة H المسقط العمودي للنقطة A على $d(A;(D)) = \frac{|-1-6-3|}{\sqrt{1^2+2^2}} = \frac{|-10|}{\sqrt{5}} = \frac{10}{\sqrt{5}} = \frac{10\sqrt{5}}{5} = 2\sqrt{5} \quad (1 \text{ indicates } 1)$ 2) نحدد أو لا معادلة ديكارتية للمستقيم (AH): x+2y-3=0 (D) متجهة موجهة ل $\vec{u}(-2,1)$ (AH)/-2x+1y+c=0 اذن $\vec{u}(-2,1)$ منظمیه علی c=1 ولدينا $A \in (AH)$ اذن $A \in (AH)$ ولدينا (AH)/-2x+1y+1=0: هي نقطة تقاطع (AH)و (D) اذن احداثيات H هي حلول H $\times (-2)$ في المعادلة الأولى في $\begin{cases} x+2y=3 \\ -2x+y=-1 \end{cases}$ نضر بنامعادلة الأولى في $\begin{cases} x+2y-3=0 \\ -2x+y+1=0 \end{cases}$ x+2y=3: ونجمع المعادلتين ونجد $\begin{cases} 2x+4y=6\\ -2x+y=-1 \end{cases}$ $y = 1 \Leftrightarrow 5y = 5 \Leftrightarrow 2x + 4y - 2x + y = 6 - 1 \Leftrightarrow$ H(1;1) ومنه $x=1 \Leftrightarrow x+2=3 \Leftrightarrow x+2y=3$: B(3;2) و A(-1;-3) و المستوى النقطتين A(-1;-3) و (AB) حدد معادلة للمستقيم (AB) عن المستقيم O عن المستقيم عن المستقيم .2 3. استنتج مساحة المثلث 3 4. حدد زوج إحداثيتي النقطة H المسقط العمودي للنقطة O على المستقيم (AB)

(AB)/5x-4y+c=0:

(AB) نحدد أو (AB) معادلة ديكارتية للمستقيم

a = 5; b = -4

 $\overrightarrow{AB}(-b,a)$ اذن $\overrightarrow{AB}(-b,a)$ اذن $\overrightarrow{AB}(4,5)$

```
أمثلة : حدد طبيعة (E) مجموعة النقط M\left( x\,;y
ight) من المستوى
                                                                                                                           التي تحقق:
                                                          (E): x^2 + y^2 - x + 3y - 4 = 0 .1
                                                       (E): x^2 + y^2 - 6x + 2y + 10 = 0 .2
                                                                    (E): x^2 + y^2 - 4x + 5 = 0 .3
                                                                     a = -1; b = 3; c = -4 (1: الأجوبة
a^2+b^2-4c=(-1)^2+3^2-4\times(-4)=1+9+16=26>0:
                  \Omega(\frac{1}{2},\frac{-3}{2}) : دائرة مركزها \Omega(\frac{-a}{2},\frac{-b}{2}) اي دائرة مركزها (E)
                                                                   R = \frac{\sqrt{a^2 + b^2 - 4c}}{2} = \frac{\sqrt{26}}{2} : less in the second of the
                                                                                            a = -6; b = 2; c = 10 (2)
       a^2+b^2-4c=(-6)^2+2^2-4\times(10)=36+4-40=0:
                                              \Omega(3;-1) : ومنه عبارة عن النقطة (E) ومنه
                                                                                             a = -4; b = 0; c = 5 (3)
                                                       a^2 + b^2 - 4c = 16 - 20 = -4 < 0:
                                                                      ومنه: (E) هي المجموعة الفارغة
            من M(x;y) من مجموعة النقط (E) مجموعة عدد طبيعة
                   (E): x^2 + y^2 + 5x - 3y + \frac{11}{2} = 0: المستوى التي تحقق
                                                                        a = 5; b = -3; c = \frac{11}{2} (: <u>!</u>
              a^2+b^2-4c=5^2+(-3)^2-4\times\left(\frac{11}{2}\right)=25+9-22=12>0:
                     \Omega(-\frac{5}{2};\frac{3}{2}) : ومنه \Omega(-\frac{a}{2};\frac{-b}{2}) ائرة مركزها (E)
                                           R = \frac{\sqrt{a^2 + b^2 - 4c}}{2} = \frac{\sqrt{12}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3}: وشعاعها
من المستوى M(x;y) مجموعة النقط M(x;y) من المستوى
                                                                                            (E) x^2 + y^2 - 1 = 0 .1
                                                               (E) x^2 + y^2 - 2x - 6y + 6 = 0 .2
                                                               (E) x^2 + y^2 - 4x - 2y + 7 = 0 .3
                                                                        (E) x^2 + y^2 + 8y + 12 = 0 .4
                                              x^2 + y^2 = 1 \Leftrightarrow x^2 + y^2 - 1 = 0 (1 : الأجوبة
                              R=1: ومنه (E) وشعاعها دائرة مركزها O(0;0) وشعاعها
   x^2-2x+1+y^2-2\times y+3^2-3^2-1+6=0 \Leftrightarrow x^2+y^2-2x-6y+6=0 (2)
                                                                                 (x-1)^2 + (y-3)^2 = 4 = (2)^2 \Leftrightarrow
                              R=2: ومنه (E) وشعاعها دائرة مركزها \Omega(1;3)
   x^2-4x+4+y^2-2\times y+1-1-4+7=0 \Leftrightarrow x^2+y^2-4x-2y+7=0 (3)
                                                                                            (x-2)^2 + (y-1)^2 = -2 \Leftrightarrow
                                                                       ومنه: (E) هي المجموعة الفارغة
    (x-0)^2+y^2+2\times 4\times y+4^2-4^2+12=0 \Leftrightarrow x^2+y^2+8y+12=0 (4)
                                                                                (x-0)^2 + (y+4)^2 = 4 = (2)^2 \Leftrightarrow
                       R=2: ومنه (E) وشعاعها دائرة مركزها \Omega(0;-4)
                                                                                              2) داخل وخارج الدائرة
```

(C) تمرین الدائرة دیکارتیة للدائرة تمرین الدائرة تمرین الدائرة الدائرة تمرین الدائرة الدائ $B\left(-1;1\right)$ و $A\left(1;3\right)$ حيث $A\left(1;3\right)$ و $R = \frac{AB}{2}$: شعاع هذه الدائرة هو $R = \frac{AB}{2} = \frac{\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}}{2} = \frac{\sqrt{4 + 4}}{2} = \frac{\sqrt{8}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}$ [AB] مركز الدائرة (C) هو :منتصف القطعة I(0,2) يعني $I(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2})$: $(C)(x-0)^2+(y-2)^2=(\sqrt{2})^2$ ومنه معادلة الدائرة هي (C) $x^2 + y^2 - 4y + 2 = 0$: يعنى 2. تمثيل بارامتري لدائرة: $\Omega(a;b)$ التي مركزها (C) خاصية و تعريف:الدائرة وشعاعها M(x;y) هي مجموعة النقط M(x;y) من المستوى (S) $\begin{cases} x = a + R\cos\theta \\ y = b + R\sin\theta \end{cases}$: التي تحقق النظمة (C) تسمى تمثيلا بار امتريا للدائرة $\Omega(1;-2)$ التي مركزها (C) التي مركزها بارا متريا للدائرة $R = \sqrt{2}$ emalas $\int x = 1 + \sqrt{2} \cos \theta$: هو (C) هو المتري للدائرة (C) هو $y = -2 + \sqrt{2} \sin \theta$ بارا متري حقيقي ($\theta \in \mathbb{R}$) مثال2 :حدد مجموعة النقط M(x;y) من المستوى التي تحقق النظمة $(\theta \in \mathbb{R})$ $\leq x = 3 + \sqrt{3}\cos\theta$ $v = 1 + \sqrt{3} \sin \theta$ $\begin{cases} x - 3 = \sqrt{3}\cos\theta \\ y - 1 = \sqrt{3}\sin\theta \end{cases} \Leftrightarrow \begin{cases} x = 3 + \sqrt{3}\cos\theta \\ y = 1 + \sqrt{3}\sin\theta \end{cases}$ $(x-3)^2 + (y-1)^2 = (\sqrt{3}\cos\theta)^2 + (\sqrt{3}\sin\theta)^2 \Leftrightarrow$ $(x-3)^2 + (y-1)^2 = 3((\cos\theta)^2 + (\sin\theta)^2) \Leftrightarrow$ $(x-3)^2 + (y-1)^2 = \sqrt{3}^2 \Leftrightarrow$ ومنه : مجموعة النقط M(x;y) هي الدائرة (C) التي مركزها $R = \sqrt{3}$ وشعاعها $\Omega(3;1)$ دراسة مجموعة النقط M(x;y) بحيث .IV $x^{2}+y^{2}+ax+by+c=0$ انقط (E) مجموعة النقط و a و b عدادا حقیقیة و (a $x^{2} + y^{2} + ax + by + c = 0$ (x; y)ومركز هذه $a^2+b^2-4c>0$: ومركز هذه وقط إذا وفقط إذا كان (E) دائرة والمركز $\Omega\left(-\frac{a}{2};-\frac{b}{2}\right)$ الدائرة هو $R = \frac{\sqrt{a^2 + b^2 - 4c}}{2}$ و شعاعها هو فان غة الفارغة (E) فان $a^2+b^2-4c<0$ فان • إذا كان $(E) = \left\{ \Omega\left(-\frac{a}{2}; -\frac{b}{2}\right) \right\}$: هي $\left(E\right)$ فان $a^2 + b^2 - 4c = 0$ إذا كان \bullet

ص 26

و ($R \succ 0$) و R و و و النره مرکزها $\Omega(a;b)$ و النره مرکزها و النره مرکزها

نقطة من المستوى M

(C) تكون النقطة Mنقطة من الدائرة \bullet

 $\Omega M=R$: إذا وفقط إذا كان

(C) تكون النقطة Mخارج الدائرة \bullet

 $\Omega M \succ R$: إذا وفقط إذا كان

 $\Omega M \prec R$: کون النقطة Mداخل الدائرة C إذا وفقط إذا كانM

تمرين16: حل مبيانيا المتراجحتين التاليتين :

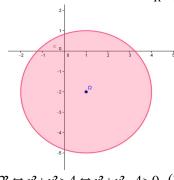
$$x^2 + y^2 - 1 > 0$$
 (2 $x^2 + y^2 - 2x + 4y - 4 < 0$ (1

 $x^2 - 2x + 1 - 1 + y^2 + 4 \times y + 4 - 4 - 4 < 0 \Leftrightarrow x^2 + y^2 - 2x + 4y - 4 < 0$

 $(x-1)^2 + (y+2)^2 < 9 = (3)^2 \Leftrightarrow$

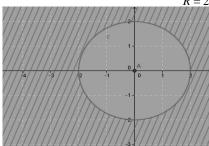
: ومنه (E) هو داخل الدائرة التي مركزها ($\Omega(1;-2)$) ومنه

R = 3



 $(x-0)^2 + (y-0)^2 > 2^2 \Leftrightarrow x^2 + y^2 > 4 \Leftrightarrow x^2 + y^2 - 4 > 0$ (2)

ومنه : (E) هو خارج الدائرة التي مركزها O(0;0) وشعاعها :



تمرين17: حل مبيانيا النظمة التالية:

$$\begin{cases} x^2 + y^2 - 1 > 0 \\ x^2 + y^2 - 4x - 12 < 0 \end{cases}$$

الجواب:

 $x^2-4x+4-4+y^2-12<0 \Leftrightarrow x^2+y^2-4x-12<0$

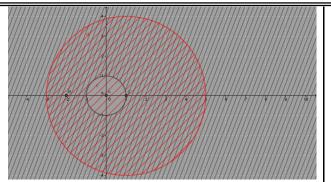
$$(x-2)^2 + (y-0)^2 < 16 = (4)^2 \Leftrightarrow$$

R=4: وهذا يعني داخل الدائرة التي مركزها $\Omega(2;0)$ وشعاعها

 $(x-0)^2 + (y-0)^2 > 1^2 \Leftrightarrow x^2 + y^2 > 1 \Leftrightarrow x^2 + y^2 - 1 > 0 \ (\because$

يعني خارج الدائرة التي مركزها O(0;0) وشعاعها : R=1 مجموعة حلول النظمة E(E) هي أزواج احداثيات نقط المستوى التي تتتمي الى تقاطع داخل الدائرة التي مركزها E(0;0) وشعاعها : E=1 و خارج الدائرة التي مركزها E(0;0) وشعاعها : E=1

أي الجزء من المستوى المخدش باللونين معا



 $oldsymbol{V}$. $oldsymbol{V}$ الأوضاع النسبية لمستقيم و دائرة في المستوى لدراسة الوضع النسبي لمستقيم D و دائرة D مركزها D وشعاعها D يمكننا حساب D مسافة النقطة D عن المستقيم D ومقارنتها بالشعاع D وبالطبع هناك ثلاث حالات :

- (C) فان: المستقيم (D) لا يقطع الدائرة $d(\Omega;(D)) \succ R$
 - و إذا كانت $d\left(\Omega;(D)\right)$ فان : المستقيم واذا كانت $d\left(\Omega;(D)\right)$ في نقطتين مختلفتين مختلفتين
- إذا كانت $R = d(\Omega;(D)) = R$ فان : المستقيم (D) يقطع الدائرة (C) في نقطة وحيدة و نقول أيضا أن (D) مماس للدائرة (C) مركز ها مثال 1: أدرس الوضع النسبى للدائرة (C) التي مركز ها

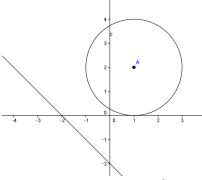
: معادلته الذي معادلته (D) الذي معادلته R=2 الذي معادلته $\Omega(1;2)$

(D): x + y + 2 = 0

الجواب: نحسب $d(\Omega,(P))$ ونقارنها مع شعاع الدائرة

: ومنه
$$d(\Omega,(P)) = \frac{|1+2+2|}{\sqrt{1^2+1^2}} = \frac{|5|}{\sqrt{2}} = \frac{5\sqrt{2}}{2} > R = 2$$

(C) المستقيم (D) لا يقطع الدائرة



مثال2: أدرس الوضع النسبي للدائرة (C) التي مركزها $\Omega(1;2)$ وشعاعها R=2 مع المستقيم $\Omega(1;2)$ الذي معادلته $\Omega(1;2)$

الجواب: نحسب $d(\Omega,(P))$ ونقارنها مع شعاع الدائرة

$$d\left(\Omega, (P)\right) = \frac{|1-2+2|}{\sqrt{1^2 + (-1)^2}} = \frac{|1|}{\sqrt{2}} = \frac{\sqrt{2}}{2} < R = 2$$

ومنه: المستقيم (D) يقطع الدائرة (C) في نقطتين مختلفتين (D) سؤال: حدد احداثيات نقط نقاطع الدائرة (C) و المستقيم (D) معادلة الدائرة هي $(x-1)^2+(y-2)^2=(2)^2$ نحل اذن النظمة التالية:

تمرين(C) ألتي مركزها تقاطع الدائرة (C) التي مركزها : معادلته (D) وشعاعها R=5 مع المستقيم $\Omega(2;1)$ (D): 3x + y - 2 = 0الجواب :نحسب $d(\Omega,(P))$ ونقارنها مع شعاع الدائرة الجواب $d\left(\Omega, (P)\right) = \frac{|6+1-2|}{\sqrt{3^2+1^2}} = \frac{|5|}{\sqrt{10}} = \frac{5\sqrt{10}}{10} = \frac{\sqrt{10}}{2}$ ومنه: المستقيم (D) يقطع الدائرة (C) في نقطتين مختلفتين معادلة الدائرة هي : $(x-2)^2+(y-1)^2=(5)^2$ تكافئ: $x^2 + y^2 - 4x - 2y - 20 = 0$ (D) و المستقيم الدائرة (C) و المستقيم نحل اذن النظمة التالية: $(1)x^2 - x - 2 = 0 \qquad (1)x^2 + y^2 - 4x - 2y - 20 = 0$ $\begin{cases} (2) \ y = -3x + 2 \end{cases} \Leftrightarrow \begin{cases} (2) 3x + y - 2 = 0 \end{cases}$ نحسب مميز المعادلة (1) فنجد: $\theta = \Delta$ ومنه للمعادلة $x_2 = -1$ و $x_1 = \frac{1+3}{2} = 2$: حلین هما y = -4: فان $x_1 = 2$ اذا کانت y = 5: فان $x_1 = -1$ اذا کانت A(2;-4) و مه نقطتا التقاطع هما A(-1;5) و التقاطع تمرين(C) ألتى التابيا تقاطع الدائرة (C) التى معادلتها : (D) المعرف (1) $x^2+y^2-2x-8y+1=0$ $(t \in \mathbb{R})$: (D): $\begin{cases} x = 1 + 2t \\ y = t \end{cases}$ بتمثیله البار امتري : الجواب: نعوض في المعادلة (1) فنجد: t(5t-8)=0: يعني $5t^2-8t=0$ يعني $(1+2t)^2+t^2-2(1+2t)-8t+1=0$ $t_2 = \frac{8}{5}$ يعني : $t_1 = 0$ $\begin{cases} x = 1 \\ y = 0 \end{cases}$ فنجد $\begin{cases} x = 1 + 2t \\ y = t \end{cases}$ فنجد $t_1 = 0$ $x = \frac{21}{5}$ اذا كانت $t_2 = \frac{8}{5}$ نعوض فنجد ومنه : المستقيم (D) يقطع الدائرة (C) في نقطتين مختلفتين $B\left(\frac{21}{5},\frac{8}{5}\right)$ و نقطتا التقاطع هما : $A\left(1;0\right)$ VI. معادلة ديكارتية لمستقيم مماس لدائرة في نقطة معلومة Ω يكون المستقيم D مماسا للدائرة C ذات المركز تذكير: (ΩA) عند النقطة A إذا وفقط إذا كان (D) عموديا على المستقيم $x^2+y^2+ax+by+c=0$ التي معادلتها (C) التي الدائرة (C) نقطة من الدائرة $A(x_4; y_4)$ و . هي: A هي النقطة A هي النقطة A $\left(x - x_A\right) \left(\frac{a}{2} + x_A\right) + \left(y - y_A\right) \left(\frac{b}{2} + y_A\right) = 0$ A في النقطة المماس الدائرة (C) معادلة المماس الدائرة \overrightarrow{AM} • $\overrightarrow{A\Omega}$ =0 \Leftrightarrow M(x,y) \in (D) : باستعمال التكافؤ

الأستاذ: عثماني نجيب

 $\Leftrightarrow \begin{cases} (1)(x-1)^2 + (y-2)^2 = (2)^2 \\ (2)x - y + 2 = 0 \end{cases}$ $x+2=y \Leftrightarrow (2)$: فنجد x+2=y (1) فنجد $(x-1)^2 + (x)^2 = 4$: يعني $(1)(x-1)^2 + (x+2-2)^2 = (2)^2$ $2x^2-2x-3=0$: يعنى $x^2-2x+1+x^2=4$ نحسب مميز المعادلة فنجد: $28 = \Delta$ ومنه للمعادلة حلين هما : $x_2 = \frac{2 - 2\sqrt{7}}{4}$ $y_1 = \frac{2 + 2\sqrt{7}}{4}$ $x_2 = \frac{1 - \sqrt{7}}{2}$ و $x_1 = \frac{1 + \sqrt{7}}{2}$: يعني x+2=y نعوض في $x_1=\frac{1+\sqrt{7}}{2}$ اذا كانت $y = \frac{1+\sqrt{7}}{2} + 2 = \frac{5+\sqrt{7}}{2}$: فنجد x+2=y نعوض في $x_{2}=\frac{1-\sqrt{7}}{2}$ اذا كانت $y = \frac{1 - \sqrt{7}}{2} + 2 = \frac{5 - \sqrt{7}}{2}$: فنجد $B\left(\frac{1-\sqrt{7}}{2};\frac{5-\sqrt{7}}{2}\right)$ و $A\left(\frac{1+\sqrt{7}}{2};\frac{5+\sqrt{7}}{2}\right)$: ومه نقطتا التقاطع هما مثال 3: أدرس الوضع النسبي للدائرة $\Omega(1;2)$ التي مركزها (C)(D) مع المستقيم R=1 وشعاعها الذي معادلته: يعني (D): y = 3(D): 0x+1y-3=0الجواب: نحسب $d(\Omega,(P))$ ونقارنها مع شعاع الدائرة ومنه : المستقيم (D) مماس للدائرة ومنه : مماس للدائرة $d\left(\Omega,(P)\right) = \frac{|0+2-3|}{\sqrt{0^2+1^2}} = \frac{|-1|}{\sqrt{1}} = 1 = R$ T سؤال : حدد احداثیات نقطة التماس (C) $(x-1)^2+(y-2)^2=1^2$: معادلة الدائرة هي نحل اذن النظمة التالبة: $\Leftrightarrow \begin{cases} (1)(x-1)^2 + (y-2)^2 = 1\\ (2)y = 3 \end{cases}$

x = 1: يعني $(x-1)^2 = 0$: يعني $(1)(x-1)^2 + 1 = 1$

نعوض في المعادلة y = 0 فنجد:

T(1;3): ومنه نقطة التماس هي

a = 4; b = 4; c = -2 $a^2+b^2-4c=(4)^2+(4)^2-4\times-2=16+16+8=40>0$: $\Omega(-2;-2)$: أي $\Omega(\frac{-a}{2};\frac{-b}{2})$ دائرة مركزها (E) $R = \frac{\sqrt{a^2 + b^2 - 4c}}{2} = \frac{\sqrt{40}}{2} = \sqrt{10}$: اوشعاعها نحسب $d(\Omega,(P))$ ونقارنها مع شعاع الدائرة (2 $d\left(\Omega, (P)\right) = \frac{\left|-2 - 6 - 2\right|}{\sqrt{1^2 + 3^2}} = \frac{\left|-10\right|}{\sqrt{10}} = \sqrt{10} = R$ (C) مماس للدائرة (D) مماس للدائرة T نحدد احداثیات نقطهٔ التماس (3) $(x+2)^2+(y+2)^2=10$: معادلة الدائرة هي نحل اذن النظمة التالية: $\begin{cases} (1)(x+2)^2 + (y+2)^2 = 10 \\ (2)x = 2 - 3y \end{cases} \Leftrightarrow \begin{cases} (1)(x+2)^2 + (y+2)^2 = 10 \\ (2)x + 3y - 2 = 0 \end{cases}$ (2)x = 2-3y $y^2 - 2y + 1 = 0$: فنجد x = 2 - 3y (1) نعوض في المعادلة x = -1: يعني y = 1: يعني $(y-1)^2 = 0$ T(-1;1) : هي التماس هي

مثال : لتكن (ح) الدائرة التي معادلتها الديكارتية هي : (1) $x^2+y^2-4x-2y+1=0$ (C) ثاکد أن $A(0;1) \in (C)$ ثم حدد مرکز وشعاع الدائرة (1 A معادلة لمماس للدائرة (C) في النقطة (2 (1) تحقق المعادلة A(0;1) تحقق المعادلة الجواب: $A(0;1) \in (C)$ ومنه (1) $0^2+1^2-4\times 0-2\times 1+1=0$ a = 4; b = -2; c = 1 $a^2 + b^2 - 4c = (4)^2 + (-2)^2 - 4 \times 1 = 16 + 4 - 4 = 16 > 0$: $\Omega(-2;1): \Omega(\frac{-a}{2};\frac{-b}{2})$ ومنه $(E): \Omega(-2;1)$ دائرة مرکزها $R = \frac{\sqrt{a^2 + b^2 - 4c}}{2} = \frac{\sqrt{16}}{2} = 2$: less in the second of ي معادلة لمماس للدائرة (C) في النقطة (2)و $\overrightarrow{AM}(x-0;y-1)$: ولدينا $\overrightarrow{AM} \cdot \overrightarrow{A\Omega} = 0 \Leftrightarrow M(x;y) \in (D)$ $\overrightarrow{A\Omega}(-2;0)$ $-2(x-0)=0 \Leftrightarrow -2(x-0)+0(y-1)=0 \Leftrightarrow M(x;y) \in (D)$ $x = 0 \Leftrightarrow M(x; y) \in (D)$ ومنه معادلة مماس الدائرة (C) في النقطة A(0;1) هو المستقيم الذي معادلته: (D): x = 0(C) الدائرة التي معادلتها الديكارتية هي : $x^2 + y^2 + 4x + 4y - 2 = 0$ x+3y-2=0: و المستقيم (D) الذي معادلته (C) عدد مركز وشعاع الدائرة (C)(C) مماس للدائرة (D) بين أن المستقيم (D) مماس

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب ملكرة رقم /5

الأهداف القدرات المنتظرة من الدرس:

مذكرة رقو 5 في درس المتتاليات:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
ـ يمكن تقديم مفهوم المتتاليات الترجعية من	- توظيف الاستدلال بالترجع؛	 المتتاليات العددية؛
خلال وضعيات مستقاة من مختلف المواد؛	ـ التمكن من در اسة متتالية (إكبار، إصغار،	ـ المنتالية الترجعية؛
_ يشكل درس المتتاليات فرصة لتعويد	رتابة)؛	 المتتاليات المكبورة، المتتاليات المصغورة،
التلاميذ على استعمال الأدوات المعلوماتية؛	- التعرف على متتالية حسابية أو هندسية وتحديد	المتتاليات المحدودة،
_ ينبغي استغلال هذه المناسبة لتوظيف	أساسها وحدها الأول؛	- رتابة متتالية،
الاستدلال بالترجع؛	_ حساب مجموع n حدا متتابعة من متتالية	- المتتاليات الحسابية،
_ ينبغي تناول المتتاليات الترجعية دون	حسابية أو متتالية هندسية.	 المنتاليات الهندسية.
مغالاة.	_ التعرف على وضعيات لمتتاليات حسابية أو	×
	هندسية؛	
	_ استعمال المتتاليات الحسابية والمتتاليات	
	الهندسية في حل مسائل.	

I. عموميات حول المتتاليات العددية:

نشاط: لاحظ ثم أتمم بأربعة أعداد ملائمة لتسلسل كل متتالية من المتتاليات التالية :

$$.....,\ 243\ , 81\ ,\ 27\ , 9\ , 3\ , 1\ (3$$

$$\frac{1}{32}$$
, $\frac{1}{16}$, $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{2}$, 1 (4)

 $\mathbb N$ او جزء من I ليكن I هو

مثال : نعتبر المتتالية العددية العددية المعرفة بالصيغة أ

$$\forall n \in \mathbb{N} \quad u_n = 2n + 3$$
: Italia ilanguari

$$u_0$$
 أحسب حدها الأول u_0

$$(u_n)_{n\geq 0}$$
 أحسب الحدود الأربعة الأولى للمتتالية 0

$$u_n$$
_{n≥0} ي = 2×1+3=5 و u_0 = 2×0+3=3 و الجواب .2

$$u_3 = 2 \times 3 + 3 = 9$$
 $u_2 = 2 \times 2 + 3 = 4 + 3 = 7$

نلاحظ أن أن فرق حدين متتالين هو العدد 2

مثال 2: نعتبر المتتالية العددية (u_n) المعرفة بالعلاقة الترجعية

$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n + 3 \end{cases}$$
: التالية

 (u_n) أحسب الحدود الأربعة الأولى للمتتالية

الجواب: نعوض n ب 0

$$u_{0+1} = 2 \times u_0 + 3 = 2 \times 1 + 3 = 2 + 3 = 5$$

 $u_1 = 5$ اذن:

نعوض n ب 1

 u_2 =13: اذن u_{1+1} = 2× u_1 +3 = 2×5+3 =10+3 =13: فنجد عوض n بغوض

$$u_{2+1} = 2 \times u_2 + 3 = 2 \times 13 + 3 = 26 + 3 = 29$$
:

 $u_3 = 29$: اذن

ملاحظة: هذه المتتالية تسمى متتالية ترجعيه II. المتتاليات المكبورة و المصغورة و المحدودة

(u_n) المعرفة العددية المعرفة

$$\forall n \in \mathbb{N} \quad u_n = \frac{n+1}{2n+1}$$
 كالتالي:

$$\forall n \in \mathbb{N} \quad \frac{1}{2} < u_n \le 1$$
 .1

$$(u_n)$$
 عن المتتالية (u_n) ?

$$n \in \mathbb{N}$$
 $u_n \le 1$ نبين أن: $n \in \mathbb{N}$ $u_n \le 1$

$$1-u_n=1-\frac{n+1}{2n+1}=\frac{(2n+1)-(n+1)}{2n+1}=\frac{n}{2n+1}\geq 0$$
 نحسب الفرق :

$$\mathbf{0} \ \forall n \in \mathbb{N} \ u_n \leq 1$$
 : ومنه

$$n \in \mathbb{N}$$
 نبین أن: $\frac{1}{2} < u_n$:نبین أن

$$u_n - \frac{1}{2} = \frac{n+1}{2n+1} - \frac{1}{2} = \frac{2(n+1) - (2n+1)}{2n+1} = \frac{1}{2n+1} > 0$$

2
$$\forall n \in \mathbb{N} \frac{1}{2} < u_n$$
 ومنه:

$$\forall n \in \mathbb{N} \quad \frac{1}{2} < u_n \le 1$$
 وبالتالي من $\mathbf{0}$ و $\mathbf{0}$ نجد:

1) نقول المتتالية العددية
$$(u_n)$$
 مكبورة بالعدد الحقيقي 1

$$\frac{1}{2}$$
 و نقول المتثالية العددية $\left(u_{n}\right)$ مصغورة بالعدد الحقيقي

و نقول ان المتتالية العددية
$$(u_n)$$
 محدودة

تعریف: لتکن
$$(u_n)_{n\in I}$$
 متتالیة عددیة

$$u_n \leq M$$
 بحیث M بحیث M بحیث و بات وجد عدد عدد M بحیث بخرورة الحال و بات $V n \in I$

$$u_n \geq m$$
 يقول إن m يمصغورة إذا وجد عدد حقيقي المصغورة $u_n \geq m$ يمصغورة $\forall n \in I$

. نقول إن
$$\left(\mathcal{U}_{n} \right)_{n \in I}$$
 محدودة إذا كانت مكبورة مصغورة .

: نعتبر المتتالية العددية
$$(u_n)$$
 المعرفة كالتالي :

$$\forall n \in \mathbb{N} \begin{cases} u_{n+1} = u_n^2 + 2u_n + 2 \\ u_0 = -1 \end{cases}$$

 $\forall n \in \mathbb{N} \left\{ u_{n+1} = \frac{8(u_n - 1)}{u_n + 2} \right\}$ كالتالي : 2 بين أن المتتالية (u_n) مصغورة بالعدد 1. 4 مكبورة بالعدد (u_n) مكبورة بالعدد 2 3. ماذا تستنتج ؟ (u_n) أدرس رتابة المتتالية 4**الأجوبة :**1) @ يكفي ان نبين أن: $\S \S n \in \mathbb{N} \quad 2 \leq u_n$ نستعمل برهانا بالترجع n=0 نتحقق أن العبارة صحيحة بالنسبة ل0n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=3\geq 2$ $u_n \ge 2$ ب)نفترض أن: $""" u_{n+1} \ge 2$ نبين أن: $u_{n+1}-2=\frac{8(u_n-1)}{u_n+2}-2=\frac{8(u_n-1)-2(u_n+2)}{u_n+2}=\frac{6u_n-12}{u_n+2}$: نحسب الفرق $u_n \ge 2$: و حسب افتراض الترجع لدينا $u_{n+1} - 2 = \frac{6(u_n - 2)}{u_n + 2}$ $u_{\scriptscriptstyle n+1}-2\geq 0$ اذنی : $u_{\scriptscriptstyle n}+2>0$ و منه $u_{\scriptscriptstyle n}-2\geq 0$ $\forall n \in \mathbb{N} \ u_n \geq 2$ وبالنالي: $n \in \mathbb{N}$ ایکفی آن نبین آن: $u_n \leq 4$:%?? $\forall n \in \mathbb{N}$ ایکفی آن نبین آن: نستعمل برهانا بالترجع n=0 نتحقق أن العبارة صحيحة بالنسبة لn=0n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=3\leq 4$ $u_n \leq 4$ (نفترض أن \otimes $""" u_{n+1} \le 4$ نبین أن: $4-u_{n+1}=4-rac{8(u_n-1)}{u_n+2}=rac{4(u_n+2)-8(u_n-1)}{u_n+2}=rac{-4u_n+16}{u_n+2}$: نحسب الفرق $u_n \leq 4$: و حسب افتر اض الترجع لدينا $u_n = 4 - u_{n+1} = \frac{4(4 - u_n)}{u_n + 2} = \frac{4(4 - u_n)}{u_n + 2}$ $4-u_{n+1} \ge 0$ و منه $u_n + 2 > 0$ و منه $4-u_n \ge 0$ $\forall n \in \mathbb{N} \quad u_n \leq 4$ وبالتالي: المتتالية العددية $(u_{\scriptscriptstyle n})$ محدودة لأنها مكبورة ومصغورة (2 $u_{n+1} - u_n = \frac{8(u_n - 1)}{u_n + 2} - u_n = \frac{8(u_n - 1) - u_n(u_n + 2)}{u_n + 2} = \frac{-u_n^2 + 6u_n - 8}{u_n + 2}$ (3) Δ نعمل $-u_n^2+6u_n-8$ نعمل $x_2 = \frac{-6-2}{-2} = 4$ و $x_1 = \frac{-6+2}{-2} = 2$: هناك جذرين $\Delta = 36-32 = 4 > 0$ $-u_n^2 + 6u_n - 8 = -(u_n - 2)(u_n - 4)$: ومنه التعميل $u_{n+1}-u_n = \frac{-(u_n-2)(u_n-4)}{u_n+2}$: $u_n - 2 \ge 0$ و $u_n \ge 0$ اذن $u_n \ge 2$ دينا $u_n - 4 \le 0$: اذن $u_n \le 4$: و لدينا ومنه: u_n) ومنه: $u_{n+1} - u_n = \frac{-(u_n - 2)(u_n - 4)}{u + 2}$ تز ایدیه تمرين \underline{u}_n : نعتبر المتتالية العددية (u_n) المعرفة

العدد 1 مصغورة بالعدد (u_n) مصغورة بالعدد 1 المتتالية $(2 \quad u_1 \quad u_1 \quad u_2 \quad u_2 \quad u_3 \quad u_3 \quad u_4 \quad u_5 \quad u_$ $u_{0+1} = u_0^2 + 2u_0 + 2 = (-1)^2 + 2 \times (-1) + 2 = 1 + -2 + 2 = 1 (1)$ $\gamma : \forall n \in \mathbb{N} \quad 1 \leq u_n$ يكفي أن نبين أن: (1 $u_n - 1 = u_n^2 + 2u_n + 2 - 1 = u_n^2 + 2u_n + 1 = (u_n + 1)^2 \ge 0$ ومنه: $u_n : \forall n \in \mathbb{N}$ وبالتالي $u_n : \forall n \in \mathbb{N}$ ومنه العدد 1 III.رتابة متتالية: نشاط :نعتبر المتتاليتين العدديتين العدديتين المعرفتين و $(u_n)_{n\in\mathbb{N}}$ $\forall n \in \mathbb{N}^*$ و $v_n = \frac{2}{n}$ و $\forall n \in \mathbb{N} \ u_n = 2n + 3$ $\left(v_{n}
ight)_{n\geq1}$ و $\left(u_{n}
ight)_{n\in\mathbb{N}}$ أحسب الحدود الأربعة الأولى للمنتاليتين خاصية: لتكن $(u_n)_{n\in I}$ متتالية عددية $\forall n \in I \quad u_{n+1} \geq u_n$:تكون المنتالية $\left(u_n\right)_{n=1}$ تزايدية إذا وفقط إذا كان $\forall n \in I$ $u_{n+1} \leq u_n$:نكون المنتالية $(u_n)_{n \in I}$ تتاقصية إذا وفقط إذا كان $(u_n)_{n \in I}$ orall n خ تكون المنتالية $\left(u_n
ight)_{n \in I}$ تابثة إذا وفقط إذا كان : • تكون المنتالية $\left(u_n
ight)_{n \in I}$ ي أدرس رتابة المتتالية العددية $\left(u_n
ight)_{n\in I}$ المعرفة كالتالي: $\forall n \in \mathbb{N} \quad u_n = 2n + 3$ (u_n) اذن: $u_{n+1} - u_n = 2(n+1) + 3 - (2n+3) = 2 > 0$ اندن: $\forall n \in \mathbb{N}$ $v_n = \frac{2}{n}$: أدرس رتابة المتتالية (v_n) المعرفة كالتالي: $v_{n+1} - v_n = \frac{2}{n+1} - \frac{2}{n} = \frac{2n-2(n+1)}{n(n+1)} = \frac{-2}{n(n+1)} < 0$ اذن: (v_n) تناقصية قطعا : أدرس رتابة المتتالية العددية (u_n) المعرفة كالتالي 2 $\forall n \in \mathbb{N} \quad u_n = \frac{-n}{n+2}$ $u_{n+1} - u_n = \left(\frac{-(n+1)}{n+1+2}\right) - \left(\frac{-n}{n+2}\right) = \frac{-n-1}{n+3} + \frac{n}{n+2}$ $u_{n+1} - u_n = \frac{-n-1}{n+3} + \frac{n}{n+2} = \frac{(-n-1)(n+2) + n(n+3)}{(n+3)(n+2)} = \frac{-2}{(n+3)(n+2)} < 0$ اذن $u_n \leq u_{n+1}$ وبالتالي $u_{n+1} \leq u_n$ اذن : أدرس رتابة المتتالية العددية (u_n) المعرفة كالتالي u_n $\forall n \in \mathbb{N} \ u_n \ge -\frac{3}{7}$: واستنتج أن $\forall n \in \mathbb{N} \quad u_n = \frac{5n-3}{2n+7}$ الجواب: $u_{n+1} - u_n = \frac{5(n+1) - 3}{2(n+1) + 7} - \frac{5n - 3}{2n + 7} = \frac{(5n + 2)}{2n + 9} - \frac{5n - 3}{2n + 7} = \frac{(5n + 2)(2n + 7) - (2n + 9)(5n - 3)}{(2n + 9)(2n + 7)}$ $u_{n+1} - u_n = \frac{10n^2 + 35n + 4n + 14 - 10n^2 + 6n - 45n + 27}{(2n+9)(2n+7)} = \frac{41}{(2n+9)(2n+7)} \ge 0$ (u_n) اذن $u_{n+1} - u_n \ge 0$ اذن $\forall n \in \mathbb{N} \ u_n \geq -\frac{3}{2}$ بما أن (u_n) تزايدية فان $u_n \geq u_0$ بما أن

تمرين u_n : نعتبر المتتالية العددية (u_n) المعرفة

 u_0 أحسب حدها الأول 1 $(u_n)_{n\geq 1}$ أحسب الحدود الأربعة الأولى للمنتالية .2 $\forall n \in \mathbb{N} \qquad u_{n+1} - u_n \quad \text{i.3}$ $u_0 = 2 \times 0 - 1 = 0 - 1 = -1$: $u_1 = 2 \times 1 - 1 = 2 - 1 = 1$ $u_2 = 2 \times 2 - 1 = 4 - 1 = 3$ $u_3 = 2 \times 3 - 1 = 6 - 1 = 5$ نلاحظ أن أن فرق حدين منتالين هو العدد 2 $u_{n+1} - u_n = (2(n+1)-1)-(2n-1)=(2n+2-1)-(2n-1)$ =(2n+2-1)-(2n-1)=(2n+1)-(2n-1)=2n+1-2n+1 اذن: $u_{n+1} - u_n = 2 = r$ r=2 : هي حسابية أساسها هي حسابية أساسها ومنه المتتالية $(u_n)_{n \geq 0}$ نقول إن r متتالية حسابية إذا وجد عدد حقيقي u_n بحيث $\forall n \geq n_0 \quad u_{n+1} = u_n + r$ $(u_n)_{n\geq n_0}$ العدد الحقيقي r يسمى أساس المتتالية : تمرين $\underline{6}$:نعتبر المتتالية العددية $(u_{_{n}})$ المعرفة كالتالي $\forall n \in \mathbb{N} \quad u_n = \frac{n+3}{\Lambda}$ بين أن المتتالية (u_n) حسابية وحدد أساسها وحدها الأول $u_{n+1} - u_n = \frac{(n+1)+3}{4} - \frac{n+3}{4} = \frac{1}{4} = r$: $rac{1}{4} = r$ ومنه المتتالية $(u_n)_{n \in I}$ هي حسابية أساسها $u_0 = \frac{3}{4}$: وحدها الأول 2. صيغة الحد العام للمتتالية بدلالة n u_0 إذا كانت (u_n) متتالية حسابية أساسها r وحدها الأول $u_n = u_0 + nr$: فان r متالية حسابية أساسها $\left(u_{n}
ight)_{n\geq n_{0}}$ المتالية تسابية أساسها $p \geq n_0$ و $n \geq n_0$ لكل $u_n = u_p + \left(n - p\right)r$: فان $u_6=31$ و $r=rac{1}{2}$:لتكن (u_n) منتالية حسابية أساسها u_{2016} ثم u_{2015} :أحسب u_n بدلالة u_n أكتب u_0 ثم u_{2016} $u_n = u_0 + nr$: الدينا (u_n) حسابية اذن (1: أجوبة (1) لدينا $28 = u_0$ يعني $31 = u_0 + 3$ يعني $u_6 = u_0 + 6 \times \frac{1}{2}$: منه $u_n = 28 + \frac{n}{2}$ $u_n = u_0 + nr$ (2) $u_{2015} = 28 + \frac{2015}{2} = \frac{2071}{2}$ (3) $u_{2016} = 28 + \frac{2016}{2} = 28 + 1008 = 1036$ $u_0 = 5$ و بحیث r التکن (u_n) متتالیة حسابیة أساسها r $u_{100} = -45$ u_{2016} و u_{2015} : حدد r عالحدد (1

 $\forall n \in \mathbb{N} \left\{ u_{n+1} = \frac{4u_n - 2}{u_n + 1} :$ كالتالي 1. بين أن المتتالية (u_n) مصغورة بالعدد 1 2. بين أن المتتالية (u_n) مكبورة بالعدد 2 3. ماذا تستنتج ؟ (u_n) أدرس رتابة المتتالية 4الأجوبة :1) ◙ يكفي ان نبين أن: $???? \forall n \in \mathbb{N} \quad 1 \leq u_n$ نستعمل برهانا بالترجع n=0 نتحقق أن العبارة صحيحة بالنسبة لn=0n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=1\geq 1$ $u_n \ge 1$ ب)نفتر ض أن: $u_{n+1} \ge 1$ نبین أن: 0 $u_{n+1}-1=\frac{4u_n-2}{u_n+1}-1=\frac{4u_n-2-(u_n+1)}{u_n+1}=\frac{3u_n-3}{u_n+1}$: نحسب الفرق $u_n \ge 1$: و حسب افتر اض الترجع لدينا $u_{n+1} - 1 = \frac{3(u_n - 1)}{1}$ $u_{\scriptscriptstyle n+1} - 1 \geq 0$ اذن : $u_{\scriptscriptstyle n} + 1 > 0$ و منه $u_{\scriptscriptstyle n} - 1 \geq 0$ $\forall n \in \mathbb{N} \ u_n \ge 1$ وبالتالي: $n \in \mathbb{N}$ يكفي ان نبين أن: $2 \leq 2$ يكفي ان نبين أن: 2نستعمل برهانا بالترجع n=0 نتحقق أن العبارة صحيحة بالنسبة لn=0n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=1\leq 2$ $u_n \leq 2$ نفترض أن: $""" : u_{n+1} \le 2$ نبين أن: $2-u_{n+1}=2-rac{4u_n-2}{u_n+1}=rac{2(u_n+1)-(4u_n-2)}{u_n+1}=rac{-2u_n+4}{u_n+1}$: نحسب الفرق $u_n \le 2$: و حسب افتر اض الترجع لدينا $2-u_{n+1} = \frac{2(2-u_n)}{u_n+1}$ $2-u_{n+1} \ge 0$ و منه $u_n + 1 > 0$ و $2-u_n \ge 0$ $\forall n \in \mathbb{N} \quad u_n \leq 2$ وبالتالي: المنتالية العددية (u_n) محدودة الأنها مكبورة ومصغورة (3 $u_{n+1} - u_n = \frac{4u_n - 2}{u_n + 1} - u_n = \frac{4u_n - 2 - u_n(u_n + 1)}{u_n + 1} = \frac{-u_n^2 + 3u_n - 2}{u_n + 2}$ (4) Δ نعمل $-u_n^2 + 3u_n - 2$ نعمل $x_2 = \frac{-3-1}{2} = 2$ و $x_1 = \frac{-3+1}{2} = 1$: هناك جذرين $\Delta = 9 - 8 = 1 > 0$ $-u_n^2 + 3u_n - 2 = -(u_n - 1)(u_n - 2)$: ومنه التعميل $u_{n+1} - u_n = \frac{-(u_n - 1)(u_n - 2)}{u + 1}$: $u_n-1 \ge 0$ و $u_n \ge 0$ اذن $u_n \ge 1$: لدينا $u_n - 2 \le 0$: اذن $u_n \le 2$ و لدينا ومنه: u_n) ومنه: $u_{n+1} - u_n = \frac{-(u_n - 1)(u_n - 2)}{u_n + 1} \ge 0$ IV. المتتاليات الحسابية:

: المعرفة بالصيغة الصريحة التالية $(u_n)_{n\geq 0}$ المعرفة بالصيغة الصريحة التالية

 $\forall n \in \mathbb{N} \quad u_n = 2n - 1$

 $u_n = u_0 + nr$: الدينا (u_n) حسابية اذن (1: أجوبة (1) لدينا

ومنه : $u_{100} = u_0 + 100$ يعني $u_{100} = u_0 + 100$ يعني $u_{2015} = 5 + 2015 \times \left(-\frac{1}{2}\right)$ يعني $u_n = u_0 + nr$: حسابية اذن (u_n) (2 $u_{2015} \!=\! \! \frac{10 \!-\! 2015}{2} \!=\! \! \frac{-2005}{2} \! \, \mathbf{u}_{2015} \! =\! 5 \!-\! \frac{2015}{2}$ $u_{2016} = \frac{-2005}{2} + \frac{-1}{2} = \frac{-2006}{2} = -1003$: المعرفة كالتالي المتتالية العددية (u_n) المعرفة كالتالي $\forall n \in \mathbb{N} \left\{ u_{n+1} = \frac{-1}{2 + u_{..}} \right.$ $v_n = \frac{1}{u+1}$: clirile il large $\left(v_n\right)$ il large large $\left(v_n\right)$ $\forall n \in \mathbb{N}$ v_1 و v_0 و u_2 .1 $\left(v_{n}\right)$ פ ועניב, אוניב, פ ועניב, $v_{n+1}-v_{n}$ פ ועניב, .2 $\forall n \in \mathbb{N} \ u_n = \frac{-3n+2}{3n+1}$: بين بالترجع أن : .3 n بدلاله v_n بدلاله 4 n استنتج طريقة أخرى لكتابة u بدلالة .5 $u_{n+1} = \frac{-1}{2 + u_n}$ أجوبة: $u_1 = -\frac{1}{4}$: اذن $u_{0+1} = \frac{-1}{2+u_0} = \frac{-1}{2+2} = \frac{-1}{4}$ نعوض n ب 1 فنجد: $u_2 = -\frac{4}{7}$: اذن $u_{\text{H}} = \frac{-1}{2+u_{\text{H}}} = \frac{-1}{2-\frac{1}{2}} = \frac{-1}{\frac{7}{2}} = \frac{-4}{7}$ $v_n = \frac{1}{u_n + 1}$ فنجد 0 نعوض n فنجد $v_0 = \frac{1}{u_0 + 1} = \frac{1}{2 + 1} = \frac{1}{3}$ $v_1 = \frac{1}{u_1 + 1} = \frac{1}{\frac{1}{1 + 1}} = \frac{3}{4}$: نعوض $n \mapsto 1$ $v_{n+1} - v_n = \frac{1}{u_{n+1} + 1} - \frac{1}{u_n + 1}$ (2) $\frac{-1}{2+u_{\cdot\cdot}}$ نعوض u_{n+1} نعوض $v_{n+1} - v_n = \frac{1}{\frac{-1}{2+u_n} + 1} - \frac{1}{u_n + 1} = \frac{1}{\frac{u_n + 1}{2+u_n}} - \frac{1}{u_n + 1} = \frac{u_n + 2}{u_n + 1} - \frac{1}{u_n + 1}$ $v_{n+1} - v_n = \frac{u_n + 2 - 1}{u_n + 1} = \frac{u_n + 1}{u_n + 1} = 1$

 $v_0 = \frac{1}{3}$: ومنه (v_n) متثالية حسابية أساسها r = 1 وحدها الأول

 $\frac{-3\times0+2}{2\times0+1} = \frac{2}{1} = 2$ و $u_0 = 2$: الدينا (أ(3)

n=0 اذن العبارة صحيحة بالنسبة ل

 $u_n = 1 + \frac{n}{2} : u_n = 1 + (n-0)\frac{1}{2} : u_n = 1$ $u_{30} = 1 + \frac{30}{2} = \frac{32}{2} = 16$: $u_3 = 1 + \frac{3}{2} = \frac{5}{2}$: each same value $u_{30} = 1 + \frac{30}{2} = \frac{32}{2} = 16$ $S_1 = (28) \frac{u_3 + u_{30}}{2} = 14 \left(\frac{5}{2} + 16\right) = 14 \left(\frac{37}{2}\right) = 7 \times 37 = 259$ وبالتالي: $S_2 = u_7 + u_8 + u_9 + \dots + u_{25} = (25 - 7 + 1) \frac{u_7 + u_{25}}{2} = (19) \frac{u_7 + u_{25}}{2}$ وبما أن r=-2 وحدها الأول (u_n) متتالية حسابية $u_n = u_0 + (n-0)r$: فأن $u_0 = 4$ $u_n = 4 - 2n$: $u_n = 4 + (n-0)(-2)$: $u_n = 4 + (n-0)(-2)$ $u_7 = 4 - 2 \times 7 = 4 - 14 = -10$ $u_{25} = 4 - 2 \times 25 = 4 - 50 = -46$ $S_2 = (19) \frac{u_7 + u_{25}}{2} = (19) \frac{-10 + -46}{2} = (19) \frac{-56}{2} = 19 \times -28 = -532$ وبالتالي: V. المتتاليات الهندسية: نشاط1: لاحظ ثم أتمم بأربعة أعداد ملائمة لتسلسل كل متتالية من المتتاليات, 243,81, 27,9,3,1 .1, $-\frac{1}{32}$, $\frac{1}{16}$, $-\frac{1}{8}$, $\frac{1}{4}$, $-\frac{1}{2}$, 1 .2 $(u_n)_{n\geq 0}$ نعتبر المنتالية العددية نصم المعرفة بالصيغة الصريحة المعرفة بالصيغة الصريحة $\forall n \in \mathbb{N} \quad u_n = 2 \times 3^n$: $(u_n)_{n\geq 0}$ أحسب الحدود الأربعة الأولى للمنتالية .1 $\forall n \in \mathbb{N}$ $\frac{u_{n+1}}{u_n}$.2 $u_2 = 2 \times 3^2 = 18$ $u_1 = 2 \times 3^1 = 6$ $u_2 = 2 \times 3^0 = 2 \times 1 = 2$ $u_3 = 2 \times 3^3 = 54$ $\frac{u_{n+1}}{u_n} = \frac{2 \times 3^{n+1}}{2 \times 3^n} = \frac{3^{n+1}}{3^n} = \frac{3^n \times 3^1}{3^n} = 3^1 = 3 = q (2)$ نقول أن المتتالية $(u_n)_{n\geq 0}$ هندسية أساسها g=g وحدها الأول $u_0 = 2$ 1. تعریف: q نقول إن متالية هندسية إذا وجد عدد حقيقي نقول إن $\forall n \geq n_0 \quad u_{n+1} = qu_n \quad :$ $(u_n)_{n\geq 0}$ العدد الحقيقي q يسمى أساس المتتالية $(u_n)_{n\geq 0}$ نعتبر المتتالية العددية نعتبر المتالية: $u_n = 5 \times 3^{2n+1}$ بين أن q متتالية هندسية و حدد أساسها q و حدها الأول $\frac{u_{n+1}}{u_n} = \frac{5 \times 3^{2n+3}}{5 \times 3^{2n+1}} = \frac{3^{2n+3}}{3^{2n+1}} = 3^{(2n+3)-(2n+1)} = 3^2 = 9 = q$ أساسها q=9وحدها الأول اذن: المتتالية $\left(u_{_{n}}
ight)_{n\geq0}$ هندسية 2. صيغة الحد العام للمتتالية بدلالة n

 $u_n = \frac{1}{1 + \frac{n}{2}} - 1 = \frac{1}{\frac{n+2}{2}} - 1 = \frac{2}{n+2} - 1 = \frac{2-n-2}{n+2} = \frac{-n}{n+2}$ 3. مجموع حدود متتابعة لمتتالية حسابية : لتكن $(u_n)_{n\in I}$ متتالية حسابية $n \succ p \geq n_0$ خيث $S_n = u_p + u_{p+1} + u_{p+2} + \cdots + u_n$ نضع $S_n = (n-p+1) \left(\frac{u_n + u_p}{2} \right)$ Legis $S_n = u_p + u_{p+1} + u_{p+2} + \dots + u_n$ المجموع يحتوي على (n-p+1) حد : متتالیة حسابیة (u_n) متتالیة حسابیة $S_n = u_0 + u_1 + u_2 + \dots + u_n = (n+1) \left(\frac{u_0 + u_n}{2} \right)$ اذا كانت (u_n) متتالية حسابية \blacksquare $S_n = u_1 + u_2 + u_3 + \dots + u_n = n \left(\frac{u_1 + u_n}{2} \right)$: فان مثال أو تمرين11: لتكن المنتالية الحسابية $(u_n)_{n>1}$ الذي $u_0 = 5$ وحدها الأول r = 3ا أكتب u_n بدلالة n وأوجد الحد التاسع (1 $S = u_0 + u_1 + u_2 + \dots + u_{13}$ (2) r=3 وحدها أن (u_n) متتالية حسابية أساسها $u_0 = 5$ الأول $u_n = u_0 + (n-0)r$: فان $u_n = 5 + 3(n-0)$ $u_n = 3n + 5$ $u_8 = 3 \times 8 + 5 = 29$: $S = u_0 + u_1 + \dots + u_{13} = (13 - 0 + 1) \frac{u_0 + u_{13}}{2} (2$ ومنه $S = 14 \frac{u_0 + u_{13}}{2} = \frac{14}{2} (5 + u_{13})$ نحسب: $u_{13} = 3 \times 13 + 5 = 44$ $S = 7(5+44) = 7 \times 49 = 343$ وبالتالي: و حدها الأول $r=\frac{1}{2}$ المتالية حسابية أساسها $r=\frac{1}{2}$ و حدها الأول .1 $S_1 = u_3 + u_4 + u_5 + \dots + u_{30}$ أحسب المجموع التالي : د الأول r=-2 و حدها الأول .2

 $S_2 = u_7 + u_8 + u_9 + \dots + u_{25}$: أحسب المجموع الثالي

 $S_1 = u_3 + u_4 + u_5 + \dots + u_{30} = (30 - 3 + 1) \frac{u_3 + u_{30}}{2} (1: 1)$ الجواب

 $S_1 = (28) \frac{u_3 + u_{30}}{2}$

وبما أن $r = \frac{1}{2}$ وحدها الأول (u_n) منتالية حسابية

 $u_n = u_0 + (n-0)r$: فان $u_0 = 1$

إذا كانت $\left(u_{n_0}\right)$ متتالية هندسية أساسها q غير منعدم وحدها الأول فان

 $u_n = u_{n_0} q^{n-n_0}$:

لتكن $\left(u_{n}\right)_{n\in I}$ غير منعدم نضع لتكن المالية هندسية $S_n = u_0 + u_1 + u_2 + \dots + u_n$ $S_{\scriptscriptstyle n} = u_0 igg(rac{1 - q^{\scriptscriptstyle n+1}}{1 - a} igg)$: فان q
eq 1مثال أو تمرين17: مثال أو تمرين17: المتالية العددية مثال أو تمرين17: المتالية العددية مثال المعرفة ال $u_0=2$ بالصيغة التالية : $u_{n+1}=3\times U_n$ و $\forall n \in \mathbb{N}$ نحقق أن $\left(u_{n}\right)_{n\geq0}$ هندسية .1 n عبر عن $U_{_{n}}$ بدلالة 2 $S_n = u_1 + u_2 + u_3 + \dots + u_5$: defining the state of the state o $\frac{u_{n+1}}{u_n} = \frac{3 \times u_n}{u_n} = 3 = q(1: الجواب)$ $u_0=3$ اذن: المتتالية هندسية أساسها q=3 وحدها الأول $u_0=3$ فندسية أساسها g=q وحدها الأول (2 $u_n = 3 \times (3)^n = 3^1 \times (3)^n = (3)^{n+1}$ غي: $u_n = u_0 q^{n-0}$ $S_n = u_1 + u_2 + u_3 + \dots + u_5 = u_1 \times \frac{1 - q^{5 - 1 + 1}}{1 - q} = u_1 \times \frac{1 - q^5}{1 - q} (3)$ $u_1 = 3^{1+1} = 3^2 = 9$ $S_n = 9 \times \frac{1 - 3^5}{1 - 3} = 9 \times \frac{1 - 3^5}{-2} = 9 \times \frac{1 - 243}{-2} = 9 \times \frac{-242}{-2} = 1029$ $u_5 = 486$: متتالیة هندسیة بحیث لتکن (u_n) متتالیة هندسیة بحیث q > 0 و أساسها $u_7 = 4374$ و u_{10} و u_0 أحسب u_0 و (2 u_n) عنتالية (1 : المجموع التالي (4 u_n بدلالة المجموع التالي) المجموع التالي (3 $S = u_0 + u_5 + \cdots + u_{2009}$ اذن: (u_n) متتالیة هندسیة اذن الجوبة $q^2 = \frac{4374}{486} = 9$: يعني $u_7 = u_5 q^{7-5}$ $q \succ 0$: وحسب المعطيات q = -3 $486 = u_0 3^5$ يعني $u_5 = u_0 q^{5-0}$: متتالية هندسية اذن (u_n) (2 $u_0 = \frac{486}{3^5} = \frac{486}{243} = 2$ يعني يعني $u_{10} = u_7 q^3$ يعني $u_{10} = u_7 q^{10-7}$ $u_{10} = 4374 \times 3^3 = 4374 \times 27 = 118098$ $u_n = 2 \times 3^n$ يعني $u_n = u_0 q^{n-0}$ (3 $S_n = u_0 + u_1 + u_1 + \dots + u_{2009} = u_0 \times \frac{1 - q^{20095 - 0 + 1}}{1 - q} = u_0 \times \frac{1 - q^{2010}}{1 - q} (4)$ $S_n = 2 \times \frac{1 - 3^{2010}}{1 - 3} = -(1 - 3^{2010}) = 3^{2010} - 1$ تمرين19: نعتبر المتتالية العددية (u_n) المعرفة $\forall n \in \mathbb{N}^*$ $u_{n+1} = \frac{2}{3}u_n + 1$: كالتالي $v_n = u_n - 3$: كالتالي المعرفة كالتالي العددية ونعتبر المتتالية العددية v_1 و v_0 و u_2 و u_1 احسب u_1

نتیجهٔ : إذا کانت $\left(u_n
ight)_{n\geq n_0}$ متتالیهٔ هندسیهٔ أساسها q غیر منعدم فان $m \ge n_0$ و $n \ge n_0$ لكل $u_n = u_m q^{n-m}$: $u_2 = \frac{9}{2}$ و $u_5 = \frac{243}{2}$: متتالية هندسية بحيث (u_n) نتكن ايتكن n ماساس المنتالية $\left(u_{n}\right)$ و أكتب q بدلالة q $u_n = u_m q^{n-m}$: ادينا $\left(u_n\right)$ متتالية هندسية انن $\frac{243}{2} = \frac{9}{2}q^3$: يعني $u_5 = u_2q^{5-2}$: ومنه q=3: يعني $q^3=27$: يعني $q^3=\frac{243}{9}$ $u_n = u_2 q^{n-2}$: أيضا يعني $u_n = \frac{9}{2}3^{n-2} = \frac{3^2 \times 3^{n-2}}{2} = \frac{3^{n-2+2}}{2} = \frac{3^n}{2}$ $\underbrace{u_n}^{-1}$:نعتبر المتتالية الهندسية $\underbrace{u_n}$ بحيث حدها الأول $q = \frac{1}{3}$: وأساسها $u_0 = 81$ u_3 و u_2 و و المحتب u_1 و يا و المحتب u_2 المحتب u_2 و يا و المحتب u_3 $u_n=1$ حدد العدد الصحيح الطبيعي n بحيث (3 الأجوبة: 1) نعلم أن $\left(u_{n}\right)_{n\geq0}$ متتالية هندسية $u_0 = 81$ أساسها $q = \frac{1}{3}$ $u_n = 81 \times \left(\frac{1}{3}\right)^n$: فن $u_n = u_0 q^{n-0}$ $u_2 = 81 \times \left(\frac{1}{3}\right)^2 = \frac{81}{9} = 9$ 9 $u_1 = 81 \times \left(\frac{1}{3}\right)^1 = \frac{81}{3} = 27(2)$ $u_3 = 81 \times \left(\frac{1}{3}\right)^3 = \frac{81}{27} = 3$ $\frac{81}{3^n} = 1$ يعني $\frac{1}{3^n} = 1$ يعني $u_n = 1(3)$ n=4 يعني $3^n=3^n$ $\underline{\underline{u}_n}$ نعتبر المّتنالية الهندسية \underline{u}_n بحيث حدها الأول $u_0 = 5$ $u_3 = 40$ 9 q=2 هو $\left(u_{_{n}}\right)$ عو المتتالية ما .1 u_4 بدلالة n و أحسب .2 $u_n = 160$ بحيث n بحيث الصحيح الطبيعي 3. : انعلم أن يعلم أن انعلم ان) نعلم أن انعلم أن انعلم انت
المجوبة انت $\left(u_{n}\right)_{n\geq0}$: يعني $q^3 = \frac{40}{5}$: يعني $u_3 = u_0 q^{3-0}$ يعني $u_3 = u_0 q^{3-0}$ q=2 . يعني $q^3=8$ $u_n = 5 \times (2)^n (2)$ $\mathfrak{I}u_2 = 81 \times \left(\frac{1}{3}\right)^2 = \frac{81}{9} = 9 \,\mathfrak{I}u_1 = 81 \times \left(\frac{1}{3}\right)^1 = \frac{81}{3} = 27$ $u_4 = 5 \times (2)^4 = 5 \times 16 = 80$

 $u_2 = 81 \times \left(\frac{1}{3}\right)^2 = \frac{81}{9} = 9$ 9 $u_1 = 81 \times \left(\frac{1}{3}\right)^1 = \frac{81}{3} = 27(3)$

n = 5: و $u_5 = 2 \times u_4 = 2 \times 80 = 160$ و منه

3. مجموع حدود متتابعة لمتتالية هندسية :

$$S_n = 7 \times \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}} = 21 \times \left(1 - \left(\frac{2}{3}\right)^{n+1}\right)$$

تمرين20: نعتبر المتنالية العددية (u_n) المعرفة كالتالي $\forall n \in \mathbb{N}$ المعرفة كالتالي $\forall n \in \mathbb{N}$ المعرفة $u_{n+1} = \frac{6}{1+u_n}$ المعرفة كالتالي المتنالية $u_0 = 3$

 $\forall n \in \mathbb{N}$ $v_n = \frac{u_n - 2}{u_n + 3}$: المعرفة كالتالي المعرفة كالتالي

 v_1 و v_0 و u_1 .1

يين أن (v_n) متتالية هندسية و حدد أساسها q و حدها الأول 2

n بدلاله u_n بدلاله v_n بدلاله v_n بدلاله 3

: اذن $u_1 = \frac{6}{1+u_0} = \frac{6}{1+3} = \frac{6}{4} = \frac{3}{2}$: اذن انحوض الجواب: 1) نعوض ابت

 $u_1 = \frac{3}{2}$

 $v_1 = \frac{u_1 - 2}{u_1 + 3} = \frac{\frac{1}{6} - 2}{\frac{1}{6} + 3} = \frac{\frac{-11}{6}}{\frac{19}{6}} = -\frac{11}{19}$ $y_0 = \frac{u_0 - 2}{u_0 + 3} = \frac{3 - 2}{3 + 3} = \frac{1}{6}$

 $\frac{u_{n+1} - 2}{u_{n+1} + 3} = \frac{\frac{6}{1 + u_n} - 2}{\frac{6}{1 + u_n} + 3} = \frac{\frac{6 - 2(1 + u_n)}{1 + u_n}}{\frac{6 + 3(1 + u_n)}{1 + u_n}} = \frac{\frac{6 - 2 - 2u_n}{1 + u_n}}{\frac{6 + 3 + 3u_n}{1 + u_n}} = \frac{\frac{4 - 2u_n}{1 + u_n}}{\frac{9 + 3u_n}{1 + u_n}} = \frac{\frac{-2(u_n - 2)}{1 + u_n}}{\frac{3(3 + u_n)}{1 + u_n}}$

$$v_{n+1} = \frac{u_{n+1} - 2}{u_{n+1} + 3} = \frac{-2(u_n - 2)}{3(3 + u_n)} = \frac{-2}{3} \times \frac{u_n - 2}{u_n + 3} = \left(-\frac{2}{3}\right) \times v_n$$

 $v_0 = \frac{1}{6}$ اذن: المتتالية (v_n) هندسية أساسها $q = \frac{2}{3}$

وحدها الأول $-\frac{2}{3}=q$ بما أن المتتالية (v_n) هندسية أساسها

 $v_0 = \frac{1}{6}$

 u_n بدلالة u_n بدلالة $v_n = \frac{1}{6} \times \left(-\frac{2}{3}\right)^n$ فان:

 $v_n u_n + 3v_n - u_n = -2 \Leftrightarrow v_n (u_n + 3) = u_n - 2 \Leftrightarrow v_n = \frac{u_n - 2}{u_n + 3}$

 $u_n = \frac{2 + 3v_n}{1 - v_n} \Leftrightarrow u_n = \frac{-2 - 3v_n}{v_n - 1} \Leftrightarrow u_n (v_n - 1) = -2 - 3v_n \Leftrightarrow$

 $u_n = \frac{2+3 \times \frac{1}{6} \times \left(-\frac{2}{3}\right)^n}{1-\frac{1}{6} \times \left(-\frac{2}{3}\right)^n}$: ونعلم أن $v_n = \frac{1}{6} \times \left(-\frac{2}{3}\right)^n$

 $u_{n} = \frac{2 + \frac{1}{2} \times \left(-\frac{2}{3}\right)^{n}}{1 - \frac{1}{6} \times \left(-\frac{2}{3}\right)^{n}}$

 $S_n = v_0 \times \frac{1 - q^{n - 0 + 1}}{1 - q} = v_0 \times \frac{1 - q^{n + 1}}{1 - q} (4)$

$$S_n = \frac{1}{6} \times \frac{1 - \left(-\frac{2}{3}\right)^{n+1}}{1 + \frac{2}{3}} = \frac{1}{6} \times \frac{3}{5} \left(1 - \left(-\frac{2}{3}\right)^{n+1}\right) = \frac{1}{10} \left(1 - \left(-\frac{2}{3}\right)^{n+1}\right)$$

 $\forall n \in \mathbb{N}$ $u_n \geq 3$: بين أن .2

 (u_n) أدر المتتالية المتتالية 3.

 (v_n) و استنتج طبیعة المتتالیة و $\frac{v_{n+1}}{v_n}$

n بدلالة v_n بدلالة .5

n بدلالة u_n بدلالة .6

 $S = v_0 + v_1 + v_2 + \dots + v_n$: أحسب بدلالة n المجموع : 0ب مبال نعوض nب الجواب: 1) نعوض المجموع : 0

 $u_1 = \frac{23}{3}$: $u_{0+1} = \frac{2}{3} \times u_0 + 1 = \frac{2}{3} \times 10 + 1 = \frac{20}{3} + 1 = \frac{20}{3} + \frac{3}{3} = \frac{23}{3}$: فنجد

 $u_2 = \frac{55}{9}$: اذن $u_{1+1} = \frac{2}{3} \times u_1 1 = \frac{2}{3} \times \frac{23}{3} + 1 = \frac{46}{9} + 1 = \frac{46}{9} + \frac{9}{9} = \frac{55}{9}$: فنجد

 $v_0 = u_0 - 3 = 10 - 3 = 7$: نعوض n ب فنجد

 $v_1 = u_1 - 3 = \frac{23}{3} - 3 = \frac{23}{3} - \frac{9}{3} = \frac{14}{3}$: نعوض n بغوض نعوض الترجع ينستعمل برهانا بالترجع

n=0 أنتحقق أن العبارة صحيحة بالنسبة ل

n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=10 \geq 3$

 $u_n \ge 3$ بنفترض أن: (ب

 $u_{n+1} \ge 3$:نبین أن

 $u_{n+1}-3=\frac{2}{3}u_n+1-3=\frac{2}{3}u_n-2=\frac{2}{3}(u_n-3)$: نحسب الفرق

 $u_n \ge 3$: الترجع لدينا التراض الترجع الدينا

 $\forall n \in \mathbb{N} \ u_n \ge 3$ اذن : $0 \le n = 1$ منه $0 \le n = 1$ وبالنالي:

 (u_n) در اسة رتابة المتتالية (3

: نحسب $u_{n+1} - u_n$ وندرس الإشارة

 $u_{n+1} - u_n = \frac{2}{3}u_n + 1 - u_n = -\frac{1}{3}u_n + 1 = -\frac{1}{3}(u_n - 3)$

 $u_{n+1}-u_n \leq 0$: نعلم أن: $\forall n \in \mathbb{N} \ u_n \geq 3$ خسب السؤال $u_n \geq 3$

ومنه المتتالية (u_n) تناقصية

(4

$$\frac{v_{n+1}}{v_n} = \frac{u_{n+1} - 3}{u_n - 3} = \frac{\frac{2}{3}u_n + 1 - 3}{u_n - 3} = \frac{\frac{2}{3}u_n - 2}{u_n - 2} = \frac{\frac{2}{3}u_n - \frac{6}{2}}{u_n - 2} = \frac{\frac{2}{3}(u_n - 3)}{u_n - 2} = \frac{2}{3} = q$$

 $v_0 = 7$ اذن: المتتالية $\binom{v_n}{r}$ هندسية أساسها $\frac{3}{2} = q$ وحدها الأول

n كتابة v_n بدلالة (5

بما أن المتتالية (v_n) هندسية أساسها $\frac{2}{3}$ وحدها الأول

 $v_{0} =$

ص 36

 $v_n = 7 \times \left(\frac{2}{3}\right)^n$ فان:

n استنتاج بدلالة (6

 $u_n = 7\left(\frac{2}{3}\right)^n + 3$: نفن: $v_n = u_n - 3$ الدينا: $v_n = u_n - 3$

$$S_n = v_0 \times \frac{1 - q^{n-0+1}}{1 - q} = v_0 \times \frac{1 - q^{n+1}}{1 - q} (7)$$

 (v_n) و استنتج طبيعة المنتالية (v_n) n بدلالة u_n بدلالة v_n بدلالة 4. (u_n) أدرس رتابة المتتالية. $S_2 = v_1 + v_2 + v_3 + \dots + v_{11}$: dirily: .6 $v_0 = \frac{1}{u_0 - 2} = \frac{1}{3 - 2} = 1$ و $u_1 = \frac{5u_0 - 4}{u_0 + 1} = \frac{15 - 4}{3 + 1} = \frac{11}{4} (1 : 1)$ 2)نستعمل برهانا بالترجع n=0 أنتحقق أن العبارة صحيحة بالنسبة ل n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=3\geq 2$ $u_n \ge 2$ بنفترض أن: $u_{n+1}-2=\frac{5u_n-4}{u_n+1}-2=\frac{5u_n-4-2(u_n+1)}{u_n+1}=\frac{3u_n-6}{u_n+1}$: نحسب الفرق $u_n \ge 2$: و حسب افتر اض الترجع لدينا $u_{n+1} - 2 = \frac{3(u_n - 2)}{u_n + 1}$ $u_{n+1}-2\geq 0$ و منه $u_n+1>0$ و $u_n-2\geq 0$: $\forall n \in \mathbb{N} \ u_n \geq 2$ وبالتالي: $\frac{5u_n-4}{u+1}$ نعوض u_{n+1} نعوض $v_{n+1}-v_n=\frac{1}{u-2}-\frac{1}{u-2}$ (3) $v_{n+1} - v_n = \frac{1}{\frac{5u_n - 4}{u_n + 1} - 2} - \frac{1}{u_n - 2} = \frac{1}{\frac{5u_n - 4 - 2(u_n + 1)}{u + 1}} - \frac{1}{u_n - 2}$ $v_{n+1} - v_n = \frac{u_n + 1}{3u_n - 6} - \frac{1}{u_n - 2} = \frac{u_n + 1}{3(u_n - 2)} - \frac{1}{u_n - 2} = \frac{u_n + 1}{3(u_n - 2)} - \frac{3}{3(u_n - 2)}$ $v_{n+1} - v_n = \frac{u_n + 1 - 3}{3(u_n - 2)} = \frac{u_n - 2}{3(u_n - 2)} = \frac{1}{3} = r$ $v_0 = 1$: وحدها الأول $r = \frac{1}{3}$ ومنه (v_n) متتالية حسابية أساسها بما أن : (v_n) متتالية حسابية أساسها وحدها الأول (4 $v_n = 1 + \frac{n}{2}$: أي $v_n = v_0 + nr$ $u_n = \frac{1}{v_n} + 2$ يعني $u_n - 2 = \frac{1}{v_n}$ يعني $v_n = \frac{1}{u_n - 2}$: نعلم أن : اذن $v_n = 1 + \frac{n}{3}$: ونعلم أن $u_n = \frac{1}{1 + \frac{n}{3}} + 2 = \frac{1}{\frac{n+3}{2}} + 2 = \frac{3}{n+3} + 2 = \frac{3+2n+6}{n+3} = \frac{9+2n}{n+3}$ (u_n) در اسة رتابة المتتالية (5 : وندرس الإشارة $u_{n+1} - u_n$ وندرس $u_{n+1} - u_n = \frac{5u_n - 4}{u_n + 1} - u_n = \frac{5u_n - 4 - u_n (u_n + 1)}{u_n + 1} = \frac{-u_n^2 + 4u_n - 4}{u_n + 1}$ $-(u_n-2)^2 \le 0 : \dot{\mathcal{U}} \quad u_{n+1} - u_n = -\frac{u_n^2 - 4u_n + 4}{u_n + 1} = -\frac{(u_n-2)^2}{u_n + 1} \le 0$ و $u_n + 1 > 0$ ومنه المنتالية $u_n + 1 > 0$ ومنه المنتالية و $u_n + 1 > 0$ $S = v_1 + v_2 + v_3 + \dots + v_{11} = 11 \times \frac{(v_1 + v_{11})}{2}$ (6

: تمرين21: نعتبر المتتالية العددية (u_n) المعرفة كالتالي ونعتبر المتتالية $\forall n \in \mathbb{N}^* \left\{ u_{n+1} = \frac{u_n}{1+u} \right\}$ $\forall n \in \mathbb{N}^* \ v_n = \frac{1}{u_n}$: العددية (v_n) المعرفة كالتالي v_1 و u_2 .1 2. بين أن (v_n) متتالية حسابية و حدد أساسها و حدها الأول n بدلالة u_n بدلالة n بدلالة v_n بدلالة 3 $v_1 = \frac{1}{u_1} = \frac{1}{1} = 1$ $u_2 = \frac{u_1}{1 + u_1} = \frac{1}{1 + 1} = \frac{1}{2} (1 : \frac{1}{1 + 1})$ $v_{n+1} - v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{1 + u_n}{u_n} - \frac{1}{u_n} = \frac{1 + u_n - 1}{u_n} = 1 = r$ (2) $v_{\rm i}=1$: ومنه $(v_{\rm i})$ متتالية حسابية أساسها و r=1: وحدها الأول r=1 وحدها الأول و دما ال $v_n=n$ يعني $v_n=1+\left(n-1
ight)$: فان $v_n=v_1+\left(n-1
ight)r$ يعني $u_n = \frac{1}{n}$: اذن $v_n = n$ اذن $u_n = \frac{1}{v_n}$ ونعلم أن $v_n = \frac{1}{u_n}$ اذن $\underbrace{u_n}_{u_n}$ نعتبر المتتالية العددية $\underbrace{u_n}_{n}$ المعرفة كالتالي: ونعتبر المتتالية $\forall n \in \mathbb{N} \mid u_{n+1} = \frac{u_n}{1+2u}$ $\forall n \in \mathbb{N}^* \ v_n = \frac{1}{u_n}$: المعرفة كالتالي المعرفة المعرفة كالتالي v_0 u_1 u_1 .1 2. بين أن (v_n) متتالية حسابية و حدد أساسها و حدها الأول n بدلاله u_n و استنتج v_n بدلاله v $v_0 = \frac{1}{u_0} = \frac{1}{1} = 1$ $u_1 = \frac{u_0}{1 + 2u_0} = \frac{1}{1 + 2} = \frac{1}{3}(1 : \frac{1}{1 + 2})$ $v_{n+1}-v_n=rac{1}{u_{n+1}}-rac{1}{u_n}=rac{1+2u_n}{u_n}-rac{1}{u_n}=rac{1+2u_n-1}{u_n}=2=r$ (2 $v_0=1:0$ ومنه (v_n) متنالية حسابية أساسها r=2:0: وحدها الأول r=2 وحدها الأول بما أن (v_n) : بما أن $v_n = 1 + 2n$: أي $v_n = v_0 + nr$: فان : it is $v_n = 1 + 2n$: it is $u_n = \frac{1}{v}$ using $v_n = \frac{1}{u}$ it is $v_n = \frac{1}{u}$. : تمرين23: نعتبر المتتالية العددية (u_n) المعرفة كالتالي $\forall n \in \mathbb{N} \left\{ u_{n+1} = \frac{5u_n - 4}{u_n + 1} \right\}$ $v_n = \frac{1}{u_n - 2}$: المعرفة كالتالي العددية (v_n) المعرفة كالتالي العددية $\forall n \in \mathbb{N}$ v_0 و u_1 أحسب .1 $\forall n \in \mathbb{N} \ u_n \geq 2$: بين أن 2

 $\forall n \in \mathbb{N}$ $v_n = \frac{2}{2u_n + 1}$: المعرفة كالتالي المعرفة $v_n = \frac{2}{2u_n + 1}$ u_3 و u_2 و u_1 .1 ين أن : (v_n) متتالية حسابية 2n اکتب u_n بدلاله n ثم استنتج بدلاله 3. $u_{13} = -\frac{7}{10}$ $u_2 = -\frac{5}{6}$ $u_1 = -\frac{3}{2}(1:\frac{1}{2})$ $\frac{u_n-1}{3+u}$ بغوض $u_{n+1}-v_n=-2$ (2 $v_0=1:$ ومنه (v_n) متتالية حسابية أساسها و منه r=-2بما أن (v_n) متتالية حسابية أساسها $r = \frac{1}{4}$ وحدها الأول (3 $v_n = -2n + 1 :$ فان $v_n = v_0 + nr :$ فان $u_n = \frac{1}{-2n+1} - \frac{1}{2}$ نعلم أن $v_n = \frac{1}{2u_n+1} - \frac{1}{2}$ يعني $v_n = \frac{2}{2u_n+1}$: نعلم : تمرين26نعتبر المتتالية العددية (u_n) المعرفة كالتالي $\forall n \in \mathbb{N} \left\{ u_{n+1} = \frac{5u_n}{2u_n + 3} \right\}$ $v_n = \frac{u_n - 1}{u_n}$: ونعتبر المتتالية العددية (v_n) المعرفة كالتالي $\forall n \in \mathbb{N}$ $\forall n \in \mathbb{N} \ u_n > 1$: بين أن .1 2. أبين أن $\binom{v_n}{n}$ متتالية حسابية وحدد أساسها وحدها الأول n بدلاله u_n بدلاله v_n بدلاله 3. أجوبة :1)نستعمل برهانا بالترجع n=0 أنتحقق أن العبارة صحيحة بالنسبة ل n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=2>1$ $u_n \ge 1$ بنفترض أن: $"""" u_{n+1} \ge 1$ انبین أن: $u_{n+1}-1=\frac{5u_n}{2u_n+3}-1=\frac{5u_n-(2u_n+3)}{2u_n+3}=\frac{3u_n-3}{2u_n+3}=\frac{3(u_n-1)}{2u_n+3}$: نحسب الفرق $u_n > 1$: و حسب افتراض الترجع لدينا $u_{n+1}-1\geq 0$ و منه $2u_n+3>0$ و $u_n-1>0$ $\forall n \in \mathbb{N} \ u_n \geq 1$ وبالتالي: $v_{n+1} - v_n = \frac{1}{\frac{5u_n - 1}{u_n + 3} - 1} - \frac{1}{u_n - 1} = \frac{1}{\frac{4u_n}{3 + u}} - \frac{1}{u_n - 1} = \frac{\frac{u_n + 3}{4u_n - 4} - \frac{4}{4u_n - 4}}{\frac{4u_n - 4}{4u_n - 4}}$ $v_{n+1} - v_n = \frac{u_n + 3 - 4}{4u_n - 4} = \frac{u_n - 1}{4u_n - 4} = \frac{u_n - 1}{4(u_n - 1)} = \frac{1}{4} = r$ $v_0 = 1:$ ومنه $r = \frac{1}{4}:$ ومنه الأول (v_n) منتالية حسابية أساسها $v_0=1$: وحدها الأول $r=\frac{1}{4}$: ساسية أساسية حسابية أساسية (v_n) متتالية حسابية أساسية (3 $v_n = 1 + \frac{n}{4}$: فان $v_n = v_0 + nr$ $u_n = \frac{1}{v} + 1$ يعني $u_n - 1 = \frac{1}{v}$ يعني $v_n = \frac{1}{u - 1}$: نعلم أن : اذن $v_n = 1 + \frac{n}{4}$ اذن

 $S = 11 \times \frac{\left(\frac{4}{3} + \frac{14}{3}\right)}{2} = 11 \times \frac{18}{3} \times \frac{1}{2} = \frac{198}{3 \times 2} = 33$: تمرين24نعتبر المنتالية العددية $\left(u_{n}\right)$ المعرفة كالتالي $\forall n \in \mathbb{N} \left\{ u_{n+1} = \frac{5u_n - 1}{u_n + 3} \right\}$ $\forall n\in\mathbb{N}$ $v_n=rac{1}{u_n-1}$: ونعتبر المنتالية العددية $\left(v_n
ight)$ المعرفة كالتالي v_0 u_1 u_1 .1 $\forall n \in \mathbb{N} \ u_n \ge 1$: بين أن .2 (v_n) و استنتج طبیعة المتتالیة $v_{n+1} - v_n$.3 n بدلالة u_n بدلالة v_n بدلالة u_n بدلالة u_n $v_0 = \frac{1}{u_0 - 1} = \frac{1}{2 - 1} = 1$ و $u_1 = \frac{5u_0 - 1}{u_0 + 3} = \frac{10 - 1}{2 + 3} = \frac{9}{5}$ (1: أجوبة 2)نستعمل برهانا بالترجع n=0 أ)نتحقق أن العبارة صحيحة بالنسبة ل n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=2\stackrel{\frown}{\geq}1$ $u_n \ge 1$ بنفترض أن: (ب $""" u_{n+1} \ge 1$:نبین أن نبین $u_{n+1}-1=\frac{5u_n-1}{u_n+3}-1=\frac{5u_n-1-(u_n+3)}{u_n+3}=\frac{4u_n-4}{u_n+3}=\frac{4(u_n-1)}{u_n+3}$: نحسب الفرق $u_n \ge 1$: و حسب افتراض الترجع لدينا $u_{\scriptscriptstyle n+1}-1 \geq 0$ و منه $u_{\scriptscriptstyle n}+3>0$. $u_{\scriptscriptstyle n}-1 \geq 0$. $\forall n \in \mathbb{N} \ u_n \ge 1$ وبالتالي: $\frac{u_n-1}{3+u_n}$ بغوض $v_{n+1}-v_n=\frac{1}{u_{n+1}-1}-\frac{1}{u_n-1}$ (3 $v_{n+1} - v_n = \frac{1}{\frac{5u_n - 1}{u_n + 3} - 1} - \frac{1}{u_n - 1} = \frac{1}{\frac{4u_n}{3 + u_n}} - \frac{1}{u_n - 1} = \frac{u_n + 3}{4u_n - 4} - \frac{4}{4u_n - 4}$ $v_{n+1} - v_n = \frac{u_n + 3 - 4}{4u_n - 4} = \frac{u_n - 1}{4u_n - 4} = \frac{u_n - 1}{4(u_n - 1)} = \frac{1}{4} = r$ $v_0 = 1$: ومنه $r = \frac{1}{4}$: الأول ومنه (v_n) ومنه ومنه (: وحدها الأول $r=\frac{1}{4}$ وحدها الأول (v_n) : بما أن $v_n = 1 + \frac{n}{4} : v_n = v_0 + nr :$ فان $u_n = \frac{1}{v_n} + 1$ يعني $u_n - 1 = \frac{1}{v_n}$ يعني $v_n = \frac{1}{u_n - 1}$: نعلم أن : اذن $v_n = 1 + \frac{n}{4}$ اذن $u_n = \frac{1}{1 + \frac{n}{4}} + 1 = \frac{1}{\frac{n+4}{4}} + 1 = \frac{4}{n+4} + 1 = \frac{4+n+4}{n+4} = \frac{n+8}{n+4}$: تمرين25: نعتبر المتتالية العددية (u_n) المعرفة كالتالي $\forall n \in \mathbb{N} \begin{cases} u_{n+1} = -1 - \frac{1}{4u_n} \\ u_0 = \frac{1}{2} \end{cases}$

$$\begin{split} u_n &= \frac{1+v_n}{1-v_n} \Leftrightarrow u_n = \frac{-1-v_n}{v_n-1} \Leftrightarrow u_n \left(v_n-1\right) = -1-v_n \Leftrightarrow \\ u_n &= \frac{1+\left(\frac{2}{5}\right)^{n+1}}{1-\left(\frac{2}{5}\right)^{n+1}} \ \vdots \ \dot{v}_n = \left(\frac{2}{5}\right)^{n+1} \ \dot{z} \ \dot{z} \end{split}$$
ونعلم أن :

تمرين28: نعتبر المتتالية العددية (u_n) المعرفة كالتالي:

$$\forall n \in \mathbb{N} \begin{cases} u_{n+1} = \frac{5u_n + 3}{u_n + 3} \\ u_0 = 1 \end{cases}$$

 $\forall n \in \mathbb{N} \ v_n = \frac{u_n - 3}{u_n + 1}$: ونعتبر المتتالية العددية (v_n) المعرفة كالتالي

 $\forall n \in \mathbb{N} \ 0 \le u_n \le 3$: بين أن . 1

 (u_n) أدرس رتابة المتتالية.

3. أبين أن (v_n) متتالية هندسية وحدد أساسها وحدها الأول

n بدلالة u_n بدلالة n ثم استنتج بدلالة v_n بدلالة 4.

أجوبة: 1)نستعمل برهانا بالترجع $orall n\in\mathbb{N}\,\,0\leq u_{_{n}}\,$ نبين أو لا أن :

n=0 أ)نتحقق أن العبارة صحيحة بالنسبة ل

n=0 أذن : العبارة صحيحة بالنسبة ل $u_0=1\geq 0$

 $u_n \ge 0$ ب)نفترض أن:

 $u_{n+1} \ge 0$: حسب افتر اض الترجع لدينا $u_n \ge 0$: حسب افتر اض

 $\forall n \in \mathbb{N} \ u_n \geq 0$ وبالتالي:

 $\forall n \in \mathbb{N} \ u_n \leq 3$: نبين أن

n=0 أنتحقق أن العبارة صحيحة بالنسبة ل

n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=1\leq 3$

 $u_n \leq 3$ بنفترض أن:

 $u_{n+1} \le 3$ نبین أن:

$$3 - u_{n+1} = 3 - \frac{5u_n + 3}{u_n + 3} = \frac{3(u_n + 3) - (5u_n + 3)}{u_n + 3} = \frac{-2u_n + 6}{u_n + 3} = \frac{-2(u_n - 3)}{u_n + 3}$$

 $u_n \leq 3$: الترجع لدينا التراض الترجع لدينا

 $3-u_{n+1} \ge 0$ و منه $u_n \ge 0$ و منه $u_n + 3 > 0$ و منه $u_n - 3 \le 0$.

 $\forall n \in \mathbb{N} \ u_n \leq 3$ وبالنالي:

ي دراسة رتابة المنتالية (u_n) نحسب : $u_{n+1}-u_n$ وندرس الإشارة : (2)

$$u_{n+1} - u_n = \frac{5u_n + 3}{u_n + 3} - u_n = \frac{5u_n + 3 - u_n (u_n + 3)}{u_n + 3} = \frac{-u_n^2 + 2u_n + 3}{u_n + 3}$$

 Δ نعمل $-u_n^2 + 2u_n + 3$

$$x_2 = \frac{-2-4}{-2} = 3$$
 عناك جنرين $x_1 = \frac{-2+4}{-2} = -1$ عناك جنرين $\Delta = 4 + 12 = 16 > 0$

 $-u_n^2 + 2u_n + 3 = -(u_n - 3)(u_n + 1)$: ومنه التعميل

$$u_{n+1} - u_n = \frac{-(u_n - 3)(u_n + 1)}{u_n + 3}$$
:

 $u_n+1\geq 0$ و $u_n+3\geq 0$: لدينا $u_n\geq 0$

 $u_n - 3 \le 0$: اذن $u_n \le 3$: و لدينا

ومنه: (u_n) تزایدیة $u_{n+1} - u_n = \frac{-(u_n - 3)(u_n + 1)}{u_n + 3} \ge 0$

$$u_n = \frac{1}{1 + \frac{n}{4}} + 1 = \frac{1}{\frac{n+4}{4}} + 1 = \frac{4}{n+4} + 1 = \frac{4+n+4}{n+4} = \frac{n+8}{n+4}$$

: تمرين (u_n) المعرفة كالتالي : تمرين (u_n) المعرفة كالتالي

$$\forall n \in \mathbb{N} \begin{cases} u_{n+1} = \frac{7u_n + 3}{3u_n + 7} \\ u_0 = \frac{7}{3} \end{cases}$$

 $\forall n\in\mathbb{N}$ $v_n=rac{u_n-1}{u_n+1}$: ونعتبر المنتالية العددية $\left(v_n
ight)$ المعرفة كالتالي

 $\forall n \in \mathbb{N} \ u_n \geq 1$: بين أن . 1

 (u_n) أدرس رتابة المتتالية .2

3. أبين أن (v_n) متتالية هندسية وحدد أساسها وحدها الأول

n بدلالة u_n بدلالة v_n بدلالة u_n بدلالة u_n

أجوبة :1)نستعمل برهانا بالترجع

n=0 أنتحقق أن العبارة صحيحة بالنسبة ل

n=0 اذن : العبارة صحيحة بالنسبة ل $u_0=rac{7}{2}\geq 1$

 $u_n \ge 1$ بنفترض أن: (ب

 $u_{n+1} \ge 1$:نبین أن:

 $u_{n+1}-1=\frac{7u_n+3}{3u_n+7}-1=\frac{7u_n+3-(3u_n+7)}{3u_n+7}=\frac{4u_n-4}{3u_n+7}=\frac{4(u_n-1)}{3u_n+7}$: نحسب الفرق

 $u_n > 1$: و حسب افتراض الترجع لدينا

 $u_{n+1}-1 \ge 0$ و منه $u_n-1 > 0$ و منه $u_n-1 > 0$

 $\forall n \in \mathbb{N} \ u_n \geq 1$ وبالتالي:

: در أَسة رتابة المتتالية (u_n) نحسب $u_{n+1}-u_n$ وندرس الإشارة u_n

$$u_{n+1} - u_n = \frac{7u_n + 3}{3u_n + 7} - u_n = \frac{7u_n + 3 - u_n (3u_n + 7)}{3u_n + 7} = \frac{-3u_n^2 + 3}{3u_n + 7}$$

$$u_{n+1} - u_n = \frac{-3(u_n + 1)(u_n - 1)}{3u_n + 7}$$

 $3u_n+7>0$ و $u_n-1\geq 0$ و $u_n+1\geq 0$ و كالم اذن $u_n\geq 1$

ومنه: (u_n) تناقصية ومنه: ومنه: $u_{n+1}-u_n \leq 0$

$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 1} = \frac{\frac{7u_n + 3}{3u_n + 7} - 1}{\frac{7u_n + 3}{3u_n + 7} + 1} = \frac{\frac{7u_n + 3 - (3u_n + 7)}{3u_n + 7}}{\frac{7u_n + 3 + (3u_n + 7)}{3u_n + 7}} = \frac{\frac{4u_n - 4}{3u_n + 7}}{\frac{10u_n + 10}{3u_n + 7}} = \frac{4u_n - 4}{10u_n + 10}$$
(3)

$$v_{n+1} = \frac{4(u_n - 1)}{10(u_n + 1)} = \frac{2}{5} \frac{u_n - 1}{u_n + 1} = \frac{2}{5} v_n$$

 $\frac{2}{5} = q$ اذن: المتتالية (v_n) هندسية

$$v_0 = \frac{u_0 - 1}{u_0 + 1} = \frac{\frac{7}{3} - 1}{\frac{7}{3} + 1} = \frac{\frac{4}{3}}{\frac{10}{3}} = \frac{2}{5}$$

بما أن المتتالية (v_n) هندسية أساسها $\frac{2}{5}$ وحدها الأول (4

$$u_n$$
 بدلالة u_n بدلالة $v_n = \frac{2}{5} \times \left(\frac{2}{5}\right)^n = \left(\frac{2}{5}\right)^{n+1}$:فان

$$v_n u_n + v_n - u_n = -1 \Leftrightarrow v_n (u_n + 1) = u_n - 1 \Leftrightarrow v_n = \frac{u_n - 1}{u_n + 1}$$

$$v_{n} = (-1) \times \left(\frac{1}{3}\right)^{n} = -\left(\frac{1}{3}\right)^{n}$$

$$: n \text{ المتنتاج } u_{n} \text{ ...} u_{n} + v_{n} - u_{n} = -3 \Leftrightarrow v_{n} \left(u_{n} + 1\right) = u_{n} - 3 \Leftrightarrow v_{n} = \frac{u_{n} - 3}{u_{n} + 1}$$

$$u_{n} = \frac{3 + v_{n}}{1 - v_{n}} \Leftrightarrow u_{n} = \frac{-3 - v_{n}}{v_{n} - 1} \Leftrightarrow u_{n} \left(v_{n} - 1\right) = -3 - v_{n} \Leftrightarrow u_{n} = \frac{3 - \left(\frac{1}{3}\right)^{n}}{1 + \left(\frac{1}{3}\right)^{n}}$$

$$v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^{n} : 0 \text{ is a positive of } v_{n} = -\left(\frac{1}{3}\right)^$$

$$v_{n+1} = \frac{u_{n+1} - 3}{u_{n+1} + 1} = \frac{\frac{5u_n + 3}{u_n + 3} - 3}{\frac{5u_n + 3}{u_n + 3} + 1} = \frac{\frac{5u_n + 3 - 3(u_n + 3)}{u_n + 3}}{\frac{5u_n + 3 + (u_n + 3)}{u_n + 3}} = \frac{\frac{2u_n - 6}{u_n + 3}}{\frac{6u_n + 6}{u_n + 3}} = \frac{2u_n - 6}{6u_n + 6}$$

$$v_{n+1} = \frac{2(u_n - 3)}{6(u_n + 1)} = \frac{1}{3} \frac{u_n - 3}{u_n + 1} = \frac{1}{3} v_n$$

$$\frac{1}{3} = q \quad \text{lambur} \quad v_n = \frac{u_0 - 3}{u_0 + 1} = \frac{1 - 3}{1 + 1} = -1$$

$$v_0 = \frac{u_0 - 3}{u_0 + 1} = \frac{1 - 3}{1 + 1} = -1$$

$$v_0 = \frac{1}{3} = q \quad \text{lambur} \quad \text{lambur} \quad v_0 = -1$$

الرباضيات مادة

المستوى: الأولى باك علوم تجريبية الأستاذ : عثماني نجيب مذكرة رقم/6

مذكرة رقع 6 في درس العساب المثلثي (ملخص)

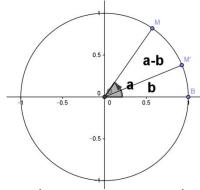
الأهداف و القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
- ينبغي توخي البساطة في تقديم هذا الفصل	- التمكن من مختلف صيغ التحويل؛	- صيغ التحويل؛
وذلك باستعمال أي تقنية في متناول التلاميذ؛	_ التمكن من حل معادلات ومتراجحات مثلثية	$a\cos x + b\sin x$
- يتم توظيف الدائرة المثلثية لحل متر اجحات		991
مثلثية بسيطة على مجال من IR.	الأساسية؛	
75.10	_ التمكن من تمثيل وقراءة حلول معادلة أو	
	متر اجحة مثلثية على الدائرة المثلثية.	

التحويل

O دائرة مثلثية مركزها (C)

معلم متعامد ممنظم $(0; \vec{i}; \vec{j})$



M' أفصول منحنى للنقطة M و d أفصول منحنى للنقطة a $\overrightarrow{OM}'(\cos b; \sin b) \supset \overrightarrow{OM}(\cos a; \sin a)$

 $\mathbf{O} \overrightarrow{OM} \cdot \overrightarrow{OM}' = \cos a \cos b + \sin a \sin b$

$$\bigcirc \overrightarrow{OM} \cdot \overrightarrow{OM}' = ||\overrightarrow{OM}||||\overrightarrow{OM}'|| \cos(a-b) = \cos(a-b)$$

 $\bigcirc \cos(a-b) = \cos a \cos b + \sin a \sin b$: من : **0** و **2** نستنج يمكن أن نبين أيضا أن:

 $\bigcirc \cos(a+b) = \cos a \cos b - \sin a \sin b$

 $\Im \sin(a+b) = \sin a \cos b + \sin b \cos a$

$$\frac{\pi}{12}$$
 و $\frac{\pi}{12}$

$$\cos\frac{\pi}{12} = \cos\left(\frac{4\pi - 3\pi}{12}\right) = \cos\left(\frac{4\pi}{12} - \frac{3\pi}{12}\right) = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) \xrightarrow{\frac{\pi}{4}}$$

$$\cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4}$$

يمكننا استعمال نتائج الجدول التالى:

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

$$\cos\frac{\pi}{12} = \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

$\stackrel{\text{(4)}}{=} \sin(\frac{\pi}{3} - \frac{\pi}{4}) = \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \sin\frac{\pi}{4}\cos\frac{\pi}{3}$ $\sin \frac{\pi}{12} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$

 $\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)} = \frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b - \sin a \sin b}$

نقسم البسط و المقام على نقسم البسط و فنجد:

 $\sin a \cos b + \sin b \cos a \quad \sin a \cos b \quad \sin b \cos a$

 $\sin(a+b)$ $\underline{-\cos a \cos b \cdot \cos a \cos b}$ tan(a+b)= $\cos a \cos b - \sin a \sin b$ cos(a+b) $\cos a \cos b$ $\cos a \cos b \cos a \cos b$

 $\textcircled{6} \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \times \tan b}$: ويمكننا أيضا أن نبين أن $(a-b) = \frac{\tan a - \tan b}{1 + \tan a \times \tan b}$

 $\tan \frac{\pi}{1}$ أحسب

 $\tan\frac{\pi}{12} = \tan\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\tan\frac{\pi}{3} - \tan\frac{\pi}{4}}{1 + \tan\frac{\pi}{3} \times \tan\frac{\pi}{4}} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}}$

$$\tan\frac{\pi}{12} = \frac{\left(\sqrt{3} - 1\right)^2}{\left(\sqrt{3} + 1\right)\left(\sqrt{3} - 1\right)} = \frac{\left(\sqrt{3} - 1\right)^2}{\left(\sqrt{3}\right)^2 - 1^2} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}$$

$$an rac{5\pi}{12}$$
 : $an rac{5\pi}{12}$ و $an rac{5\pi}{12}$ و $an rac{5\pi}{12}$ د أحسب $an rac{5\pi}{12}$

$$\tan \frac{7\pi}{12}$$
 $\sin \frac{7\pi}{12}$ $\cos \frac{7\pi}{12}$.4

$$\cos x = \cos\left(x + \frac{\pi}{3}\right) + \cos\left(x - \frac{\pi}{3}\right)$$
 : نين أن .5

$$\cos \frac{5\pi}{12} = \cos \left(\frac{2\pi + 3\pi}{12} \right) = \cos \left(\frac{2\pi}{12} + \frac{3\pi}{12} \right) = \cos \left(\frac{\pi}{6} + \frac{\pi}{4} \right) (1 + \frac{\pi}{12})$$

$$cos(\frac{\pi}{6} + \frac{\pi}{4}) = cos\frac{\pi}{6}cos\frac{\pi}{4} - sin\frac{\pi}{6}sin\frac{\pi}{4}$$
$$cos\frac{5\pi}{12} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\frac{4}{\sin(\frac{\pi}{6} + \frac{\pi}{4})} = \sin\frac{\pi}{6}\cos\frac{\pi}{4} + \sin\frac{\pi}{4}\cos\frac{\pi}{6}$$

$$\sin\frac{5\pi}{12} = \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

 $\sin^2 a = 1 - \left(\frac{1}{2}\right)^2$ يعني $\sin^2 a = 1 - \cos^2 a$ يعني $\cos^2 a + \sin^2 a = 1$: نعلم أن $0 \prec a \prec \frac{\pi}{2}$: يعني $\sin a = \frac{\sqrt{3}}{2}$ أو $\sin a = \frac{\sqrt{3}}{2}$ يعني $\sin^2 a = \frac{3}{4}$ $\sin a = \frac{\sqrt{3}}{2}$: اذن $\sin(a+b) = \sin a \cos b + \sin b \cos a$:نعلم أن $\sin(a+b) = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1$ II. نتائج صيغ التحويل و صيغ أخرى $\cos(2a) = 1 - 2\sin^2 a \quad \text{so} \quad \cos(2a) = \cos^2 a - \sin^2 a$ $\cos^2 a = \frac{1 + \cos 2a}{2}$: اذن $\cos(2a) = 2\cos^2 a - 1$ $\cos^2 a + \sin^2 a = 1$ $\sin^2 a = \frac{1 - \cos 2a}{2}$ $1 + \tan^2 a = \frac{1}{\cos^2 a}$ $\sin(2a) = 2\sin a \times \cos a$ $x \in \left[0; \frac{\pi}{2}\right]$ و $\sin x = \frac{1}{3}$: علما أن $\sin(2x)$ و $\cos(2x)$ $\cos(2x) = 1 - 2\sin^2 x$: أجوبة: نعلم أن $c \cos(2x) = 1 - 2\left(\frac{1}{3}\right)^2 = 1 - \frac{2}{9} = \frac{7}{9}$: اذن $\cos x$: ومنه يجب حساب $\sin(2x) = 2\sin x \times \cos x$ ونعلم أن $\cos^2 b = 1 - \left(\frac{1}{3}\right)^2$ يعني $\cos^2 x = 1 - \sin^2 x$ يعني $\cos^2 x + \sin^2 x = 1$ $x \in \left[0; \frac{\pi}{2}\right]$: ونعلم أن $\cos x = \frac{\sqrt{8}}{3}$ يعني $\cos x = \frac{\sqrt{8}}{3}$ يعني $\cos^2 x = \frac{8}{3}$ $\sin(2x) = 2\frac{1}{2} \times \frac{\sqrt{8}}{2} = \frac{2\sqrt{8}}{2}$ each equation $\cos x = \frac{\sqrt{8}}{2}$: $(\frac{\pi}{4}=2\times\frac{\pi}{2})$ د $\sin\frac{\pi}{2}$ د $\cos\frac{\pi}{2}$ الحظ أن $\cos\frac{\pi}{2}$ $\cos \frac{\pi}{\circ}$: حساب أجوبة: $a=\frac{\pi}{2}$: مثلا ونضع مثلا $\cos^2 a = \frac{1+\cos 2a}{2}$: نستعمل العلاقة $\cos^2\frac{\pi}{9} = \frac{2+\sqrt{2}}{4}$ يعني $\cos^2\frac{\pi}{9} = \frac{1+\cos\frac{\pi}{4}}{2}$ يعني $\cos^2\frac{\pi}{9} = \frac{1+\cos2\frac{\pi}{8}}{2}$ يعني $\cos^2\frac{\pi}{9} = \frac{1+\cos2\frac{\pi}{8}}{2}$ $\cos \frac{\pi}{9} = -\sqrt{\frac{2+\sqrt{2}}{4}}$ يعني $\cos \frac{\pi}{9} = \sqrt{\frac{2+\sqrt{2}}{4}}$ يعني $\cos\frac{\pi}{8} = \sqrt{\frac{2+\sqrt{2}}{4}} = \frac{\sqrt{2+\sqrt{2}}}{2}$ ومنه : $\cos\frac{\pi}{8} \ge 0$ اذن : $0 \le \frac{\pi}{8} \le \frac{\pi}{2}$ و $\sin^2 a = \frac{1-\cos 2a}{2}$: مانية استعمال احدى القواعد التالية يمكننا استعمال احدى $\cos^2 a + \sin^2 a = 1$ $\sin(2a) = 2\sin a \times \cos a$ $a=\frac{\pi}{8}$: لدينا $\sin^2 a=\frac{1-\cos 2a}{2}$: لدينا $\sin^2\frac{\pi}{0} = \frac{2-\sqrt{2}}{4}$ ونجد $\sin^2\frac{\pi}{0} = \frac{1-\cos\frac{\pi}{4}}{2}$ يعني $\sin^2\frac{\pi}{0} = \frac{1-\cos\frac{\pi}{4}}{2}$ ونجد $\sin \frac{\pi}{8} = -\sqrt{\frac{2-\sqrt{2}}{4}}$ $\sin \frac{\pi}{8} = \sqrt{\frac{2-\sqrt{2}}{4}}$

 $\tan\frac{5\pi}{12} = \frac{\sin\frac{5\pi}{12}}{\cos\frac{5\pi}{12}} = \frac{\frac{\sqrt{6+\sqrt{2}}}{4}}{\frac{\sqrt{6-\sqrt{2}}}{\sqrt{6}-\sqrt{2}}} = \frac{\left(\sqrt{6+\sqrt{2}}\right)^2}{6-2} = \frac{\left(\sqrt{6+\sqrt{2}}\right)^2}{4}$ $\tan \frac{5\pi}{12} = \frac{\left(\sqrt{6} + \sqrt{2}\right)^2}{4} = \frac{8 + 2\sqrt{12}}{4} = \frac{8 + 4\sqrt{3}}{4} = 2 + \sqrt{3}$ $\cos \frac{7\pi}{12} = \cos \left(\frac{4\pi + 3\pi}{12} \right) = \cos \left(\frac{4\pi}{12} + \frac{3\pi}{12} \right) = \cos \left(\frac{\pi}{3} + \frac{\pi}{4} \right) (2\pi)$ $\cos(\frac{\pi}{3} + \frac{\pi}{4}) = \cos\frac{\pi}{3}\cos\frac{\pi}{4} - \sin\frac{\pi}{3}\sin\frac{\pi}{4}$ $\cos \frac{7\pi}{12} = \frac{1}{2} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} = \frac{\sqrt{2} - \sqrt{6}}{4}$ $\sin \frac{7\pi}{12} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}$ $\tan\frac{7\pi}{12} = \frac{\sin\frac{7\pi}{12}}{\cos\frac{7\pi}{12}} = \frac{\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{6}-\sqrt{2}}{4}} = \frac{\sqrt{6}+\sqrt{2}}{\sqrt{2}-\sqrt{6}} = \frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{2-6} = \frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{-4}$ $\tan \frac{7\pi}{12} = \frac{8 + 2\sqrt{12}}{4} = \frac{8 + 4\sqrt{3}}{4} = -2 - \sqrt{3}$ **??** $cos(x+\frac{\pi}{3})+cos(x-\frac{\pi}{3})=cosx(3)$ $\cos(x+\frac{\pi}{3}) + \cos(x-\frac{\pi}{3}) = \cos\frac{\pi}{3}\cos x - \sin\frac{\pi}{3}\sin x + \cos\frac{\pi}{3}\cos x + \sin\frac{\pi}{3}\sin x$ $=\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x = 2x - \cos x = \cos x$ $\sin(x+\frac{2\pi}{3})+\sin(x-\frac{2\pi}{3})+\sin x=0$: يين أن $\sin(x + \frac{2\pi}{3}) = \sin x \cos \frac{2\pi}{3} + \sin \frac{2\pi}{3} \cos x = \sin x \cos \left(\pi - \frac{\pi}{3}\right) + \sin \left(\pi - \frac{\pi}{3}\right) \cos x$ $\sin(x+\frac{2\pi}{3}) = -\sin x \cos \frac{\pi}{3} + \sin \frac{\pi}{3} \cos x$ $\sin(x - \frac{2\pi}{3}) = \sin x \cos \frac{2\pi}{3} - \sin \frac{2\pi}{3} \cos x = \sin x \cos \left(\pi - \frac{\pi}{3}\right) - \sin \left(\pi - \frac{\pi}{3}\right) \cos x$ $\sin(x-\frac{2\pi}{3}) = -\sin x \cos \frac{\pi}{3} - \sin \frac{\pi}{3} \cos x$ $\sin(x+\frac{2\pi}{2})+\sin(x-\frac{2\pi}{3})+\sin x=-2\sin x\cos\frac{\pi}{3}+\sin x=-\sin x+\sin x=0$ $\cos a = \sin b = \frac{1}{2}$ علما أن: $a = \sin b = \frac{1}{2}$ علما أن: $a = \sin b = \frac{1}{2}$ علما أن: $\cos b$ و $\sin a$.1 $\sin(a+b)$.2 $\cos b$ أجوبة: 1) حساب $\cos^2 b = 1 - \left(\frac{1}{2}\right)^2$ يعني $\cos^2 b = 1 - \sin^2 b$ يعني $\cos^2 b + \sin^2 b = 1$ $0 < b < \frac{\pi}{2}$ يعني $ab = \frac{\sqrt{3}}{2}$ يعني $ab = \frac{\sqrt{3}}{2}$ يعني $ab = \frac{3}{2}$ يعني $ab = \frac{3}{2}$ $\cos b = \frac{\sqrt{3}}{2}$: اذن $\sin a$ – Luna

 $\cos^3 x = \cos^2 x \times \cos x = \frac{1 + \cos 2x}{2} \times \cos x = \frac{1}{2} (\cos x + \cos 2x \times \cos x)$ $\cos^{3} x = \frac{1}{2} \left(\cos x + \frac{1}{2} (\cos 3x + \cos x) \right) = \frac{1}{2} \cos x + \frac{1}{4} \cos 3x + \frac{1}{4} \cos x = \frac{3}{4} \cos x + \frac{1}{4} \cos 3x$ $\cos^3 x = \frac{1}{4} (3\cos x + \cos 3x)$: ومنه $\frac{2tan}{1-tan^2a}$ وفق شروط محددة $\tan(2a)=\frac{2 an^2a}{1-\tan^2a}$ $\sin x = 2\sin\frac{x}{2} \times \cos\frac{x}{2}$ $\sin x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2}$ $\sin x = 2\sin\frac{x}{2} \times \cos\frac{x}{2}$ $\sin x = 2\sin\frac{x}{2} \times \cos\frac{x}{2}$ $\sin x = \frac{2\tan^2\left(\frac{x}{2}\right)}{1+\tan^2\left(\frac{x}{2}\right)} \quad \text{o} \quad \cos x = \frac{1-\tan^2\left(\frac{x}{2}\right)}{1+\tan^2\left(\frac{x}{2}\right)}$ $x \neq \frac{\pi}{2} + k\pi$ بوضع : $t = \tan\left(\frac{x}{2}\right)$ بوضع : $t = \tan\left(\frac{x}{2}\right)$ $k \in \mathbb{Z}$ و لکل $x \neq \pi + 2k\pi$ $\tan x = \frac{2t}{1-t^2}$ **9** $\cos x = \frac{1-t^2}{1+t^2}$ **9** $\sin x = \frac{2t}{1+t^2}$ الدينا $\cos x$ و $\sin x$ و $\tan x$ احسب $\tan \left(\frac{x}{2}\right) = 3$ $Q(x)=1+\cos x+\cos 2x$ علما أن $P(x)=\sin 2x-\sin x$ و $P(x)=\sin 2x$ $P(x) = \sin x (2\cos x - 1)$ نين أن $Q(x) = \cos x (2\cos x + 1)$: نين أن $Q(x)=1+\cos x+\cos 2x=1+\cos x+2\cos^2 x-1=\cos x+2\cos^2 x=\cos x(1+2\cos x)$ $P(x) = \sin 2x - \sin x = 2\sin x \cos x - \sin x = \sin x (2\cos x - 1)$ III. تحويل جداء إلى مجموع: $\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$ $\sin a \sin b = -\frac{1}{2} \left[\cos(a+b) - \cos(a-b) \right]$ $\sin a \cos b = \frac{1}{2} \left[\sin \left(a + b \right) + \sin \left(a - b \right) \right]$ $\cos a \sin b = -\frac{1}{2} \left[\sin \left(a + b \right) - \sin \left(a - b \right) \right]$ أمثلة:أكتب على شكل مجموع: $\cos 4x \times \cos 6x (3 \sin x \times \sin 3x (2 \cos 2x \times \sin 4x (1 \cos 2x (1 \cos 2x \times \sin 4x (1 \cos 2x (1$ $\cos 2x \times \sin 4x = \frac{1}{2} \left(\sin(2x + 4x) - \sin(2x - 4x) \right) = \frac{1}{2} \left(\sin 6x - \sin(-2x) \right) (1$ $= \frac{1}{2} \left(\sin 6x + \sin 2x \right) = \frac{1}{2} \sin 6x + \frac{1}{2} \sin 2x$ $\sin x \times \sin 3x = \frac{1}{2} (\cos(x+3x) - \cos(x-3x)) = \frac{1}{2} (\cos 4x - \cos(-2x)) (2$ $\sin x \times \sin 3x = \frac{1}{2} (\cos 4x - \cos(2x)) = \frac{1}{2} \cos 4x - \frac{1}{2} \cos(2x)$ $\cos 4x \times \cos 6x = \frac{1}{2} (\cos (4x + 6x) + \cos (4x - 6x)) = \frac{1}{2} (\cos 4x - \cos (-2x))$ (3)

 $\sin\frac{\pi}{6} = \sqrt{\frac{2-\sqrt{2}}{4}} = \frac{\sqrt{2-\sqrt{2}}}{2}$ ومنه : $\sin\frac{\pi}{8} \ge 0$ اذن : $0 \le \frac{\pi}{8} \le \frac{\pi}{2}$ اذن $\forall x \in \left[0; \frac{\pi}{2}\right] \frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x} = 2$: تمرین أن $\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x} = \frac{\sin 3x \cos x - \sin x \cos 3x}{\sin x \cos x} = \frac{\sin (3x - x)}{\sin x \cos x}$: الجواب $\sin x \cos x$ $\forall x \in \mathbb{R}$: تمرين7بين أن $\sin^2 2x - \cos 2x - 1 = -2\cos^2 x \times \cos 2x$ (1) $2\sin^2 x + 12\cos^2 x = 5\cos 2x + 7$ (2) $\sin^2 2x - \cos 2x - 1 = (2\cos x \sin x)^2 - 2\cos^2 x + 1 - 1(1$ $4\cos^2 x \sin^2 x - 2\cos^2 x = -2\cos^2 x \cos 2x$ $2\sin^2 x + 12\cos^2 x = 2\sin^2 x + 12(1-\sin^2 x) = -10\sin^2 x + 12$ (2) $=\frac{-10}{2}(1-\cos 2x)+12=-5(1-\cos 2x)+12=5\cos 2x+7$ $\forall x \in \mathbb{R}$: بين أن $\sin 3x = \sin x \times \left(3 - 4\sin^2 x\right) \quad (1$ $\cos 3x = \cos x (4\cos^2 x - 3)(2$ $\cos(4x) = 8\cos^4 x - 8\cos^2 x + 1$ (3) $\sin(4x) = 4\sin x \left(2\cos^3 x - \cos x\right) (4$ $\cos^3 x = \frac{1}{4} (3\cos x + \cos 3x) (5$ $\sin 3x = \sin(2x+x) = \sin 2x \cos x + \cos 2x \sin x$ (1: أجوبة $=2\sin x\cos^2 x + (1-2\sin^2 x)\sin x = 2\sin x(1-\sin^2 x) + (1-2\sin^2 x)\sin x$ $=2\sin x - 2\sin^3 x + \sin x - 2\sin^3 x = 3\sin x - 4\sin^3 x = \sin x(3 - 4\sin^2 x)$ $\cos 3x = \cos(2x + x) = \cos x \cos 2x - \sin 2x \sin x (2x + x)$ $=\cos x(2\cos^2 x-1)+\sin x\times 2\cos x\sin x=2\cos^3 x-\cos x-2\cos x\sin^2 x$ $=2\cos^3 x - \cos x - 2\cos x (1 - \cos^2 x) = 2\cos^3 x - \cos x - 2\cos x + 2\cos^2 x$ $=4\cos^3 x - 3\cos x = \cos x (4\cos^2 x - 3)$ $c \cos(4x) = c \cos(2 \times 2x) = 2 \cos^2 2x - 1 = 2(2 \cos^2 x - 1)^2 - 1(3$ $=2(4\cos^4 x - 4\cos^2 x + 1) - 1 = 8\cos^4 x - 8\cos^2 x + 1$ $\sin(4x) = \sin(2 \times 2x) = 2\sin 2x \cos 2x = 2 \times 2\sin x \cos x (2\cos^2 x - 1)(4\cos^2 x - 1)$

 $\sin(4x) = 4\sin x \cos x (2\cos^2 x - 1) = 4\sin x (2\cos^3 x - \cos x)$ $x = \frac{1}{4} (3\cos x + \cos 3x) (5$

 $\frac{1}{4}(3\cos x + \cos 3x) = \frac{1}{4}(3\cos x + \cos(x + 2x)) = \frac{1}{4}(3\cos x + \cos x \cos 2x - \sin x \sin 2x)$ $= \frac{1}{4} \left(3\cos x + \cos x \left(2\cos^2 x - 1 \right) - 2\sin x \sin x \cos x \right)$ $= \frac{1}{4} (2\cos^3 x - \cos x - 2\cos x + 2\cos^3 x + 3\cos x) = \frac{1}{4} (4\cos^3 x) = \cos^3 x$ طريقة2:نستعمل صيغة تحويل جذاء الى مجموع

 $\cos 4x \times \cos 6x = \frac{1}{2}\cos 4x - \frac{1}{2}\cos (2x)$

$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin p - \sin q = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin 2x + \sin 4x = 2\sin\left(\frac{2x+4x}{2}\right)\cos\left(\frac{2x-4x}{2}\right)$$

$$\sin 2x + \sin 4x = 2\sin 3x\cos\left(-2x\right) = 2\sin 3x\cos 2x$$

$$\cos \frac{5x}{2} + \cos \frac{3x}{2} = 2\cos \left(\frac{\frac{5x}{2} + \frac{3x}{2}}{2}\right) \cos \left(\frac{\frac{5x}{2} - \frac{3x}{2}}{2}\right) = 2\cos(2x)\cos\left(\frac{x}{2}\right)$$

$$\cos \frac{5x}{2} - \cos \frac{3x}{2} = -2\sin\left(\frac{5x}{2} + \frac{3x}{2}\right) \sin\left(\frac{5x}{2} - \frac{3x}{2}\right) = -2\sin(2x)\sin\left(\frac{x}{2}\right)$$

$$\cos^{2} \frac{5x}{2} - \cos^{2} \frac{3x}{2} = 2\cos(2x)\cos\left(\frac{x}{2}\right) \times -2\sin(2x)\sin\left(\frac{x}{2}\right) = 2\cos(2x)\cos\left(\frac{x}{2}\right)$$

$$\cos^{2} \frac{5x}{2} - \cos^{2} \frac{3x}{2} = 2\cos(2x)\cos\left(\frac{x}{2}\right) \times -2\sin(2x)\sin\left(\frac{x}{2}\right) = 2\cos(2x)\cos\left(\frac{x}{2}\right)$$

$$2 2 2 2 \cos(2x) \cos(2x) \cos(2x) \cos(2x) \cos(2x) \sin(2x) \cos(\frac{x}{2}) \sin(\frac{x}{2}) = -\sin(4x) \sin x$$

 $\sin x + \sin 2x + \sin 3x = 2\sin x \cos x (1 + 2\cos x)$: بين أن $\sin x + \sin 2x + \sin 3x = \sin 2x + \cos 2x = \sin 2x = \sin 2x + \cos 2x = \sin 2x = \sin 2x = \sin 2x = \sin 2x + \sin 2x = \sin 2x = \sin 2x = \sin 2x + \sin 2x = \sin 2x = \sin 2x + \sin 2x = \sin 2x =$ $= \sin 2x + 2\sin 2x \cos x = \sin 2x (1 + 2\cos x) = 2\sin x \cos x (1 + 2\cos x)$

 $a\cos x + b\sin x$: تحويل الصيغة \mathbf{V}

 $\cos x - \sin x$ مثال: a=-1 a=1 $\sqrt{a^2+b^2} = \sqrt{1^2+(-1)^2} = \sqrt{2}$:

$$\cos x - \sin x = \sqrt{2} \left(\frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} \sin x \right) = \sqrt{2} \left(\cos \frac{\pi}{4} \cos x - \sin \frac{\pi}{4} \sin x \right)$$

$$\cos x - \sin x = \sqrt{2} \cos \left(\frac{\pi}{4} + x \right)$$

 $\sqrt{3}\cos x + \sin x = \sqrt{3}$: المعادلة [0;2 π] حل في $\sqrt{3}\cos x + \sin x$: i.e. i.e. i.e.

$$\sqrt{a^2+b^2} = \sqrt{\sqrt{3}^2+1^2} = \sqrt{4} = 2$$
:

$$\sqrt{3}\cos x + \sin x = 2\left(\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x\right) = 2\left(\cos\frac{\pi}{6}\cos x + \sin\frac{\pi}{6}\sin x\right)$$

$$\sqrt{3}\cos x + \sin x = 2\cos\left(x - \frac{\pi}{6}\right)$$

$$2\cos\left(x - \frac{\pi}{6}\right) = \sqrt{3} \Leftrightarrow \sqrt{3}\cos x + \sin x = \sqrt{3}$$

$$\cos\left(x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right) \Leftrightarrow 2\cos\left(x - \frac{\pi}{6}\right) = \sqrt{3}$$

$$x - \frac{\pi}{6} = -\frac{\pi}{6} + 2k\pi$$
 يعني: $x - \frac{\pi}{6} = \frac{\pi}{6} + 2k\pi$

$$x = 2k\pi$$
 يعني: $x = \frac{\pi}{3} + 2k\pi$

$$S = \left\{0; \frac{\pi}{3}; 2\pi\right\}$$
 : ومنه

 $\cos^2 \frac{5x}{2} - \cos^2 \frac{3x}{2} = -\sin 4x \times \sin x$: تمرین 12:بین أن

 $\cos^2 \frac{5x}{2} - \cos^2 \frac{3x}{2} = \left(\cos \frac{5x}{2} + \cos \frac{3x}{2}\right) \left(\cos \frac{5x}{2} - \cos \frac{3x}{2}\right)$: $|\cos \frac{5x}{2} - \cos \frac{3x}{2}|$

أكاديمية الجهة الشرقية نيابة وجدة

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مدكرة رقم /7

مذكرة رقو 7٪ في درس النمايات

الأهداف و القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
بتم تقديم مفهوم النهاية بطريقة حدسية من		$x \to x^3$ و $x \to \sqrt{x}$ و $x \to x^2$ الدوال $x \to x^3$
للل سلوك الدوال المرجعية المحددة في		و " $x ightarrow x $ ونهايات مقلوبات هذه الدوال في
رنامج ومقلوباتها بجوار الصفر و ∞+		الصفر و ∞+ و ∞-؛
∞_ وقبول هذه النهايات؛	1990	- النهاية المنتهية والنهاية اللامنتهية في نقطة
بتم الاعتماد على خاصيات الترتيب في IR	000	_ النهاية المنتهية والنهاية اللامنتهية في ∞+
ساب نهایات دو ال بسیطة تحقق:		و ∞ – ا
ونهایتها 0؛ $ f(x)-l \le u(x)$	*	- العمليات على النهايات؛
$f(x) \ge u(x)$ دالة نهايتها $f(x) \ge u(x)$	*	- النهاية على اليمين؛ النهاية على اليسار؛
$-\infty$ دللهٔ نهایتها $f(x) \le u(x)$	*	- نهايات الدوال الحدودية والدوال الجذرية؛
تعتبر العمليات على النهايات المنتهية	<u> </u>	نهاية دوال من الشكل: \sqrt{f} حيث f دالة
للامنتهية مقبولة وينبغي تعويد التلاميذ على		اعتيادية؛
ستعمال الصحيح لها.		$\lim_{x\to 0} \frac{1-\cos x}{x^2}$ و $\lim_{x\to 0} \frac{\tan x}{x}$ و $\lim_{x\to 0} \frac{\sin x}{x}$
ينبغي تعويد التلاميذ على إزالة الأشكال		
ر المحددة البسيطة.	A 1 New 2017	$\lim_{x\to 0} \frac{\sin ax}{x}$
إن أي دراسة نظرية لمفهوم النهاية تعتبر		- النهايات و الترتيب؛
ارج المقرر.	خ	

[. نهایة منتهیة لدالة نقطة

f(x)=2x كالتالي: الدالة العددية المعرفة على الدالي الدالة العددية المعرفة على الدالة العددية العددية المعرفة على العددية العددية

f(x) الكتابة: يقرأ النهاية عندما يؤول x إلى الكتابة الكتابة: الكتابة الك

 $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x = 0$ **دینا** و لاینا

 $\lim_{x\to 0} x^2 = 0$ • $\lim_{x\to 0} x = 0$ • نهایات اعتبادیة:

 $\forall n \in \mathbb{N}^* \quad \lim_{x \to 0} x^n = 0 \qquad \bullet \quad \lim_{x \to 0} x^3 = 0 \quad \bullet$

تمرين1: أحسب النهايات التالية:

$$\lim_{x \to 1} \frac{5x - 1}{3x^2 - x} (2 \quad \lim_{x \to -1} (3 + x - 3x^2) (1)$$

 $\lim_{x \to -1} 3 + x - 3x^2 = 3 + (-1) - 3(-1)^2 = 3 + (-1) - 3 = -1 = l\frac{1}{2}$

$$\lim_{x \to 1} \frac{5x - 1}{3x^2 - x} = \frac{5 \times 1 - 1}{3(-1)^2 - (-1)} = \frac{4}{3 + 1} = 1 = l \quad (2)$$

$-\infty$ ا. نهایة غیر منتهیة لداله عند $-\infty$ ا و $-\infty$

 $f\left(x\right)=x^{2}$ كالتالي: \mathbb{R} كالتالي: $f\left(x\right)$

							. :) التالج	ملأ الجدول
-10000	-1000	-10	-1	0	1	10	100	10000	х
									f(x)

 $\lim_{x \to \infty} f(x) = \infty$ نلاحظ أنه عندما تكبر f(x) فان f(x) فان غالم

 $\lim_{x\to\infty} f(x) = +\infty$: نلاحظ أنه عندما تصغر x فإن f(x) فإن فإن أنه عندما تصغر

$$\lim_{x \to +\infty} x^2 = +\infty$$
 $\lim_{x \to +\infty} x = +\infty$ • lim $\lim_{x \to +\infty} x = +\infty$ • lim $\lim_{x \to +\infty} x^2 = +\infty$ • lim $\lim_{x \to +\infty} x^2 = +\infty$ • lim $\lim_{x \to +\infty} x^2 = +\infty$ • lim $\lim_{x \to +\infty} x =$

 $\lim_{x \to +\infty} x^3 = +\infty$

 $\lim_{x \to -\infty} x = -\infty \lim_{x \to -\infty} x^2 = +\infty \quad \bullet \quad \lim_{x \to +\infty} x^n = +\infty \quad \forall n \in \mathbb{N}^* \quad \bullet$

 $\lim_{x\to\infty} x^n = -\infty$ اذا کان $\lim_{x\to\infty} x^n = +\infty$ $\lim_{x\to\infty} x^n = -\infty$ اذا کان $\lim_{x\to\infty} x^n = -\infty$ اذا کان $\lim_{x\to\infty} x^n = -\infty$

 $\lim_{x \to -\infty} x^{2014}$ (2 $\lim_{x \to +\infty} x^{6}$ (1: تمرین2:أحسب النهایات التالیة

 $\lim_{x \to -\infty} -7x^9 \ (4 \ \lim_{x \to -\infty} x^{2015} \ (3$

 $\lim_{x \to \infty} x^{2014} = +\infty (2 \quad \lim_{x \to +\infty} x^6 = +\infty (1:\frac{1}{2})$

 $\lim_{x \to 0} -7x^9 = +\infty \ (4 \lim_{x \to 0} x^{2015} = -\infty \ (3$

$-\infty$ ا و ∞ ا او ∞

 $f(x) = \frac{1}{x}$ كالتالي: f(x) كالتالي: أيكن الدالة العددية المعرفة على

								لتالي :	للاً الجدول ا
-10	÷							10	x
10000	000	-10	<u>.</u>	0	1	10	100	10000	
									f(x)

نلاحظ أنه عندما تكبر x فان f(x) تقترب من الصفر

 $\lim_{x\to+\infty} f(x) = 0^+ : 0$ و نکتب

نلاحظ أنه عندما تصغر X فان f(x) تقترب من الصفر

 $\lim_{x \to \infty} f(x) = 0^-$:

$$\lim_{x \to -\infty} \frac{1}{x} = 0^- \quad \bullet \quad \lim_{x \to +\infty} \frac{1}{x} = 0^+ \quad \bullet \quad \text{is also in } 1$$

$$\lim_{x \to -\infty} \frac{1}{x^n} = 0 \ \forall n \in \mathbb{N}^* \quad \bullet \quad \lim_{x \to +\infty} \frac{1}{x^n} = 0 \ \forall n \in \mathbb{N}^* \quad \bullet$$

خاصية: لتكن f دالة عددية و f عددا حقيقيا

إذا كانت f تقبل نهاية l في $\infty+$ (أو في ∞) فان هده النهاية وحيدة.

 $\lim_{x\to\infty}\frac{1}{x^5}$ (2 $\lim_{x\to+\infty}\frac{1}{x^3}$ (1: التالية التالية) حسب النهايات التالية

$$\lim_{x \to +\infty} \frac{12}{x^{2009}} \quad (5 \qquad \lim_{x \to +\infty} \frac{-4}{x^5} \quad (4 \qquad \lim_{x \to -\infty} \frac{5}{x^7} \quad (3$$

$$\lim_{x \to -\infty} \frac{1}{x^5} = 0^-$$
 (2 $\lim_{x \to +\infty} \frac{1}{x^3} = 0^+$ (: الأجوبة

$$\lim_{x \to +\infty} \frac{12}{x^{2009}} = 0^{+} (5 \lim_{x \to +\infty} \frac{-4}{x^{5}} = 0^{-} (4 \lim_{x \to -\infty} \frac{5}{x^{7}} = 0^{-} (3)$$

IV. النهاية اللانهائية لدالة في نقطة

نهایات اعتیادیة: • $\infty + = \frac{1}{x}$ وتقرأ النهایة عندما یؤول x إلی و المایات اعتیادیة:

• $\lim_{x \to -\infty} \frac{1}{x} = -\infty$ • $\lim_{x \to -\infty} \frac{1}{x} = -\infty$

(3
$$\lim_{x\to 0^-} \frac{-5}{x^3}$$
 (2 $\lim_{x\to 0^+} \frac{1}{x^3}$ (1: تمرين 4: أحسب النهايات التالية

$$\lim_{x\to 0^+} 3x + 7 + \frac{1}{\sqrt{x}} (6 \lim_{x\to 0^+} \frac{-1}{\sqrt{x}} (5 \lim_{x\to 0^-} \frac{-12}{x^4}) (4$$

$$(3 \quad \lim_{r\to 0^-} \frac{-5}{r^3} = -\infty \quad (2 \quad \lim_{r\to 0^+} \frac{1}{r^3} = +\infty \quad (1:1)$$

 $\lim_{r\to 0^+} \frac{9}{r^5} + \infty$

 $\lim_{x\to 0^{-}} 3x+7+\frac{1}{\sqrt{x}}=0+7+\infty=+\infty$ (6 $\lim_{x\to 0^{-}} \frac{-1}{\sqrt{x}}=-\infty$ (5 $\lim_{x\to 0^{-}} \frac{-12}{x^{4}}=-\infty$ (4

النهاية على اليمين والنهاية على اليسار لدالة في نقطة

اليمين عندما يؤول a اليمين يؤول إلى الم يؤول إلى اليمين اليمين المين المين

$$\lim_{\substack{x \to a \\ x \to a}} f(x) = l$$
 " $\lim_{\substack{x \to a^+ \\ x \to a^+}} f(x) = l$ " : فإننا نكتب

اليسار على اليسار a الي اليسار عندما يؤول الي اليسار ا $\lim_{\substack{x \to a \\ x < a}} f(x) = l \quad \text{in} \quad \lim_{\substack{x \to a \\ x < a}} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \text{in} \quad \lim_{x \to a} f(x) = l \quad \lim_$

•
$$\lim_{\substack{x\to 0\\x\to 0}} \frac{1}{x} = -\infty$$
 • $\lim_{\substack{x\to 0\\x\to 0}} \frac{1}{x} = +\infty$ • im $\frac{1}{x} = +\infty$

$$\lim_{\substack{x\to 0\\x\to 0}} \frac{1}{\sqrt{x}} = +\infty \quad \bullet \quad \lim_{\substack{x\to 0\\x\to 0}} \sqrt{x} = 0 \quad \bullet \quad \forall n \in \mathbb{N}^* \quad \lim_{\substack{x\to 0\\x\to 0}} \frac{1}{x^n} = +\infty$$

$$\lim_{\substack{x\to 0\\x\to 0}}\frac{1}{x^n}=+\infty$$
 فان n زوجي غير منعدم, فان n

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{1}{x^n} = -\infty$$
 اذا کان n فردي غير منعدم , فان n فردي غير منعدم

$$\lim_{x \to 3^{-}} \frac{3x+1}{2x-6} (2 \lim_{x \to 3^{+}} \frac{3x+1}{2x-6} (1:3x+1) = 0$$

$$\lim_{x \to 3^{-}} 2x-6 = 0$$

$$\lim_{x \to 3^{-}} 2x-6 = 0$$

$$\lim_{x \to 3^{-}} 3x+1 = 0$$

$$\lim_{x \to 3^{-}} 2x-6 = 0$$

$$\lim_{x\to 3^+} 2x - 6 = 0$$
 الجوية: $3x + 1 = 9 + 1 = 10$

x	$-\infty$	3	$+\infty$
2x-6	_	þ	+

$$\lim_{x\to 3^+} \frac{3x+1}{2x-6} = +\infty : \lim_{x\to 3^+} 2x-6 = 0^+$$
 و بالتالي:

$$\lim_{x\to 3^-} \frac{3x+1}{2x-6} = -\infty : و بالتالي : \lim_{x\to 3^-} 2x-6 = 0^- (2)$$

$$\lim_{x \to 2^{-}} \frac{3x - 8}{2x - 4} \quad \lim_{x \to 2^{+}} \frac{3x - 8}{2x - 4}$$
 و
$$\lim_{x \to 2^{+}} \frac{3x - 8}{2x - 4}$$

$$\lim_{x \to 1^+} \frac{x-9}{-2x^2+3x-1} (3 \quad \lim_{x \to 3^-} \frac{x-4}{-2x+6} \mathbf{9} \quad \lim_{x \to 3^+} \frac{x-4}{-2x+6} (2$$

$$\lim_{x \to 2^{\pm}} \frac{5x - 20}{-2x + 4} (5 \lim_{x \to -2^{\pm}} \frac{-5x^2 + 1}{x + 2} (4 \lim_{x \to 1} \frac{x - 9}{-2x^2 + 3x - 1})$$

$$\lim_{x \to 2^{\pm}} 2x - 4 = 0 \lim_{x \to 2^{\pm}} 3x - 8 = -2 \underbrace{(1 : \frac{1}{2})}_{x \to 2}$$

$$\begin{array}{c|cccc} x & -\infty & 2 & +\infty \\ 2x-4 & - & 0 & + \end{array}$$

$$\lim_{x\to 2^+} \frac{3x-8}{2x-4} = +\infty : \lim_{x\to 2^-} 2x-4 = 0^-$$

$$\lim_{x \to 3^{+}} -2x + 6 = 0 \text{ a } \lim_{x \to 3^{+}} x - 4 = -1 \text{ (2)}$$

I	x	$-\infty$	3	$+\infty$
	-2x+6	+	Ó	_

$$\lim_{x\to 3^+} \frac{x-4}{-2x+6} = +\infty : \lim_{x\to 3^+} -2x+6 = 0^-$$

$$\lim_{x \to 3^{-}} \frac{x-4}{-2x+6} = -\infty$$
 : $\lim_{x \to 3^{-}} -2x+6 = 0^{+}$

$$\lim_{x \to 1^+} \frac{x-9}{-2x^2+3x-1} = +\infty$$
 (3)

$$\lim_{x \to 1^{+}} -2x^{2} + 3x - 1 = 0 \quad \lim_{x \to 1^{+}} x - 9 = -8$$

$$-2x^{2}+3x-1$$
 ندرس اشارة

$$-2x^2 + 3x - 1$$
 نلاحظ أن : 1 جذر للحدودية $x - 1$ اذن : هي تقبل القسمة على : $x - 1$

$$-2x^2+3x-1=(x-1)(-2x+1)$$
: نجد أن

$$x=1_{\ell}$$
 ومنه $x=\frac{1}{2}$ يعني $(x-1)(-2x+1)=0$ يعني $-2x^2+3x-1=0$:

ĺ	x	$-\infty$	1/2		1	+∞
	$-2x^2+3x-1$	_	þ	+	þ	_

$$\lim_{x \to 1^{-}} \frac{x-9}{-2x^{2}+3x-1} = -\infty \quad 9 \quad \lim_{x \to 1^{+}} \frac{x-9}{-2x^{2}+3x-1} = +\infty \quad : \text{ each }$$

$$\lim_{x \to -2^{\pm}} \frac{-5x^2 + 1}{x + 2}$$
 (4

$$\lim_{x \to -2^+} x + 2 = 0 \quad \lim_{x \to -2^+} -5x^2 + 1 = -19$$
 Lim $= -19$ Lim $= -19$

$$\lim_{x \to -2^{-}} \frac{-5x^{2} + 1}{x + 2} = +\infty \quad \mathbf{9} \quad \lim_{x \to -2^{+}} \frac{-5x^{2} + 1}{x + 2} = -\infty \quad \mathbf{:}$$

$$\lim_{x\to 2^+} -2x+4=0$$
 الدينا (5

x	$-\infty$	2	$+\infty$
-2x+4	+	Ų	

$$\lim_{x\to 2^{-}} \frac{5x-20}{-2x+4} = -\infty \quad \mathbf{9} \quad \lim_{x\to 2^{+}} \frac{5x-20}{-2x+4} = +\infty \quad \mathbf{:}$$

l' في كل ما يلي a عدد حقيقي أو يساوي $+\infty$ أو $-\infty$ و a عددان حقيقيانو هذه العمليات نبقى صالحة على اليمين و اليسار 1. النهاية و الجمع:

	$\lim_{x \to a} f(x)$	l	l	l	+∞	-∞	-∞	+∞		
	$\lim_{x \to a} g(x)$	l'	+∞	-∞	+∞	-∞	+∞	-∞		
	$\lim_{x \to a} (f + g)(x)$	l' +l	+∞	-∞	+∞	-∞	غیر محدد	شكل		
•	$\lim_{x\to 0^+} 3x + 7 + \frac{1}{\sqrt{x}}$ أحسب النهايات التالية:									
	$\lim_{x\to 0^+} \frac{1}{\sqrt{x}} = +\infty$ ومنه: $\lim_{x\to 0^+} 7 = 7$ ومنه:									
					1	$\lim_{x\to 0^+} 3x -$	$+7+\frac{1}{\sqrt{3}}$	<u>-</u> = +∞		
					:	الضرب	هاية و	2. النـ		

								-			
$\lim_{x \to a} f(x)$	l	l≻0	l≺0	l≻0	l≺0	+∞	+∞	-∞	0	+∞	-∞
$\lim_{x \to a} g(x)$	l'	+∞	+∞	-∞	-00	+∞	-00	-00	+∞ -∞	0	

 $\lim_{x \to \infty} x^2 - x$ (2 و $\lim_{x \to \infty} 5x^4$ (1 : أمثلة: أحسب النهايات التالية

$$\lim_{x \to +\infty} \left(x - \sqrt{x} \right) \left(5 \lim_{x \to \infty} \left(x^2 + 1 \right) \times \frac{1}{x} \left(4 \lim_{x \to -\infty} \left(x^2 - 1 \right)^{2008} \times \left(x^3 + 1 \right)^{2009} \right) \right)$$
 (3)

 $\lim 5x^4 = 5 \times (+\infty) = +\infty$ (1: أجوبة

 $+\infty-\infty$: نحصل عن شكل غ محدد من قبيل $\lim x^2-x=+\infty-\infty$

نرفع ال شغم مثلا بالتعميل:

و
$$\lim_{x \to +\infty} x = +\infty$$
 : النيا $\lim_{x \to +\infty} x^2 - x = \lim_{x \to +\infty} x(x-1)$

 $\lim_{x \to +\infty} x - 1 = +\infty$

 $\lim_{x\to +\infty} x^2 - x = +\infty :$

$$\lim_{x\to\infty} (x^3+1)^{2009} = -\infty$$
 $\lim_{x\to\infty} (x^2-1)^{2008} = +\infty$ (3)

 $\lim_{x \to \infty} (x^2 - 1)^{2008} \times (x^3 + 1)^{2009} = -\infty$

:
$$\lim_{x \to \infty} \frac{1}{x} = 0^{-3} \lim_{x \to \infty} (x^2 + 1) = +\infty$$
 (4) المحدد من قبيل $\lim_{x \to \infty} (x^2 + 1) = +\infty$

$$\lim_{x\to\infty} (x^2+1) \times \frac{1}{x} = \lim_{x\to\infty} x + \frac{1}{x} = -\infty + 0 = -\infty$$
: نرفع ال ش غ م مثلا بالنشر

ين شكل غ محدد من قبيل: $\lim_{\infty \to -\infty} x = -\infty$ غ محدد من قبيل:

 $\lim_{x \to +\infty} \left(x - \sqrt{x} \right) = \lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x} - 1 \right) = +\infty : \text{ distance in the proof of the proof of$

3. النهاية و المقلوب:

$\lim_{x\to a}g\left(x\right)$	$l' \in \mathbb{R}^*$	+∞	-∞	0+	0-
$\lim_{x\to a}\left(\frac{1}{g}\right)(x)$	$\frac{1}{l'}$	0	0	+∞	-∞

 $\lim_{x \to \infty} \frac{1}{x+7} + \frac{1}{x^2}$ 9 $\lim_{x \to 0^+} \frac{1}{3x+7} + \frac{1}{\sqrt{x}}$: it is it is it.

 $\lim_{x\to 0^+} \frac{1}{\sqrt{x}} = +\infty$ $\lim_{x\to 0^+} \frac{1}{3x+7} = \frac{1}{7}$: i.e. (1: أجوبة

 $\lim_{x \to 0^+} \frac{1}{3x+7} + \frac{1}{\sqrt{x}} = +\infty : \frac{1}{3x+7} = +\infty$

$$\lim_{x \to -\infty} \frac{1}{x+7} + \frac{1}{x^2} = 0 : \lim_{x \to -\infty} \frac{1}{x^2} = 0 : \lim_{x \to -\infty} \frac{1}{x^2} = 0 : \lim_{x \to -\infty} \frac{1}{x+7} = 0 (2)$$

$\lim_{x\to 0}\frac{1}{ x }=+\infty$: each	$\lim_{x\to 0} \left x \right = 0^+ \left(3 \right)$
---	---

رج:	الخا	اية و	8:	12	.4	
.+00	-00	~		-00		

$\lim_{x\to a} f(x)$	l	l	-00	-00	00	∞ l≺0	≻0 +∞	.+∞ l ≻ 0	-∞ '≺0	-00		+∞ -∞
$\lim_{x\to a}g\left(x\right)$	≠0	00	- 0	-0	0	0+	0+	0-	0-	< 0		+∞ -∞
$\lim_{x \to a} \left(\frac{f}{g} \right) (x)$	<u>l</u> <u>l'</u>		ю	-00	DO	-∞	+∞	-∞	+∞	⊦ ∞	إمطلا	شكل غير

$$\lim_{x\to 2} \frac{x^2-4}{x-2} (2 \qquad \lim_{x\to 1} \frac{4x-5}{|x-4|} (1: |x-4|) = \lim_{x\to 2} \frac{4x-5}{|x-4|} (1: |x-4|) = \lim_{x\to 2} \frac{x^2-4}{|x-4|} = \lim_{x\to 2} \frac{x^2-4}{|x-4|$$

$$\lim_{x\to 1} |x-4| = 3$$
 $\lim_{x\to 1} 4x-5 = -1$: Limit (1:

$$\lim_{x\to 1} \frac{4x-5}{|x-4|} = -\frac{1}{3}$$

$$\lim_{x\to 2} x - 2 = 0$$
 المينا $\lim_{x\to 2} x^2 - 4 = 0$ المينا $\lim_{x\to 2} \frac{x^2 - 4}{x - 2}$ المينا غير شكل غ محدد من قبيل غير محدد عن شكل غ

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{x^2 - 2^2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} x + 2 = 4$$

 $\lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} \left(2 \lim_{x \to 3} \frac{x^2 - 9}{x - 9} (1: \frac{x - 2}{1}) \right) = \frac{x - 2}{1}$

$$\lim_{x \to 2} \frac{3x^2 - 5x - 2}{2x^2 - 5x + 2} \left(5 \lim_{x \to 1} \frac{2x^2 - 5x + 3}{x^2 + 2x - 3} \right) \left(4 \lim_{x \to 3} \frac{x - 3}{x^2 - 2x - 3} \right) \left(3 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 5x + 2} \right) \left(5 \lim_{x \to 1} \frac{2x^2 - 5x + 3}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 5x + 2} \right) \left(5 \lim_{x \to 1} \frac{2x^2 - 5x + 3}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 5x + 2} \right) \left(5 \lim_{x \to 1} \frac{2x^2 - 5x + 3}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 2x - 3}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 2x - 3}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \left(5 \lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 2x - 3} \right) \right$$

$$\lim_{x\to 0} \frac{-9}{\sqrt{x}} \left(8 \quad \lim_{x\to 2} \frac{x^4 - 16}{x - 2} \left(7 \quad \lim_{x\to 1} \frac{2x^3 + x^2 - 3}{2x^2 + x - 3} \right) \right) \left(6 + \frac{1}{2} \left(6$$

$$\lim_{x \to 3} x - 3 = 0$$
 و $\lim_{x \to 3} x^2 - 9 = 0$ البينا : $\lim_{x \to 3} \frac{2 - 9}{x - 3} (1 \frac{1}{x - 3})$ نحصل عن شکل غ محدد من قبیل : $\frac{0}{0}$

نتخلص من ال ش غ م مثلا بالتعميل ثم بالاختزال:
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{x^2 - 3^2}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} x + 3 = 6$$

$$\lim_{x \to 3} x - 3 \xrightarrow{x \to 3} x - 3 \xrightarrow{x \to 3} x - 3 \xrightarrow{x \to 3}$$

$$\lim_{x \to \frac{1}{2}} 2x - 1 = 0 \xrightarrow{y} \lim_{x \to \frac{1}{2}} 4x^2 - 1 = 0 \xrightarrow{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} (2 \xrightarrow{0} \div 2x - 1) \xrightarrow{x \to 3} (2 \xrightarrow{x \to 3} + 2x - 1)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to 3} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to 3} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to 3} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to 3} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to 3} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

$$= 0 \div 2x - 1 = 0 \xrightarrow{x \to \frac{1}{2}} (2 - 3)$$

نتخلص من ال شغم مثلا بالتعميل ثم بالاختزال:

$$\lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} = \lim_{x \to \frac{1}{2}} \frac{(2x)^2 - 1^2}{2x - 1} = \lim_{x \to \frac{1}{2}} \frac{(2x - 1)(2x + 1)}{2x - 1} = \lim_{x \to \frac{1}{2}} 2x + 1 = 2$$

$$\lim_{x \to 3} x^2 - 2x - 3 = 0$$

$$\lim_{x \to 3} x - 3 = 0 : \lim_{x \to 3} \frac{x - 3}{x^2 - 2x - 3}$$

$$\frac{0}{2} : \lim_{x \to 3} \frac{x - 3}{x^2 - 2x - 3}$$
نحصل عن شکل غ محدد من قبیل

نتخلص من ال شغم مثلا بالتعميل ثم بالاختزال:

 $x^2 - 2x - 3$ نلاحظ أن : 3 جذر للحدودية

x-3: هي تقبل القسمة على

 $x^2-2x-3=(x-3)(x+1)$: وباستعمال تقنية القسمة الاقليدية نجد أن

$$\lim_{x \to 3} \frac{x-3}{x^2 - 2x - 3} = \lim_{x \to 3} \frac{x-3}{(x-3)(x+1)} = \lim_{x \to 3} \frac{1}{x+1} = \frac{1}{4}$$

$$\lim_{x \to 1} x^2 + 2x - 3 = 0 \quad \lim_{x \to 1} 2x^2 - 5x + 3 = 0 : \frac{2x^2 - 5x + 3}{x^2 + 2x - 3} \quad (4$$

$$\frac{0}{0} : \frac{0}{0} \Rightarrow 0$$
نحصل عن شکل غ محدد من قبیل نجمه

$$x^2 + 2x - 3$$
 نلاحظ أن : 1 جذر الحدودية $2x^2 - 5x + 3$ و الحدودية 1 : اذن : الحدوديتان تقبلان القسمة على : $x - 1$

 $2x^2-5x+3=(x-1)(2x-3)$: وباستعمال تقنية القسمة الاقليدية نجد أن

```
\lim_{x \to 0} -5x^3 - 4x + 12 = \lim_{x \to 0} -5x^3 = +\infty  (2)
                                                                             \lim_{x \to +\infty} \frac{5x^5 + 3x^2 + x}{-10x^5 - x - 1} = \lim_{x \to +\infty} \frac{5x^5}{-10x^5} = -\frac{5}{10} = -\frac{1}{2}  (3)
                                                                        \lim_{x \to \infty} \frac{-3x^6 + 2x^2 + 1}{x^3 + 3x - 1} = \lim_{x \to \infty} \frac{-3x^6}{x^3} = \lim_{x \to \infty} -3x^3 = +\infty  (4
                                      \lim_{x \to -\infty} \frac{20x^3 - 7x^2 + x}{10x^4 - 3x - 6} = \lim_{x \to -\infty} \frac{20x^3}{10x^4} = \lim_{x \to -\infty} \frac{20}{10x} = \lim_{x \to -\infty} \frac{2}{x} = 0^{-}  (5
                                                                        \lim_{x \to +\infty} \frac{2x^5 + 4x^2 + 1}{x^8 - x + 3} = \lim_{x \to +\infty} \frac{2x^5}{x^8} = \lim_{x \to +\infty} \frac{2}{x^3} = 0^+ \quad (6
                                                               \lim_{x \to +\infty} \frac{3x^2 + 1}{(x - 1)^2} = \lim_{x \to +\infty} \frac{3x^2 + 1}{x^2 - 2x + 1} = \lim_{x \to +\infty} \frac{3x^2}{x^2} = 3  (7)
                                                                                                                                                         7. نهاية الدوال اللاجذرية
                                                 خاصية: التكن f دالة عددية معرفة على مجال على الشكل
                                                                                                       f(x) \ge 0 \ \forall x \in [a; +\infty[ بحیث [a; +\infty[
                                            \lim \sqrt{f(x)} = \sqrt{l} فان l \ge 0 و \lim f(x) = l
                                             \lim \sqrt{f(x)} = +\infty فأن l \ge 0 فان f(x) = +\infty
                  \lim_{x\to 2} \frac{\sqrt{x-1}-1}{x-2} (3 \lim_{x\to +\infty} \sqrt{x+7} (2 \lim_{x\to 2} \sqrt{3x^2+4} (1 : initial)
                                                                   \lim_{x \to 0} \sqrt{3x^2 + 4} = \sqrt{3 \times 2^2 + 4} = \sqrt{16} = 4 (1) أجوبة:
           \lim \sqrt{x+7} = +\infty : 0
\lim x+7 = +\infty : \lim \sqrt{x+7} 
\lim \sqrt{x+7} 
(2)
                   \lim_{x \to 2} x - 2 = 0 \quad \lim_{x \to 2} \sqrt{x - 1} - 1 = 0 : \lim_{x \to 2} \frac{\sqrt{x - 1} - 1}{x - 2} \quad (3)
نحصل عن شکل غ محدد من قبیل : \frac{0}{2}
                                                          نتخلص من ال شغم بالضرب بالمرافق ثم بالاختزال:
    \lim_{x \to 2} \frac{\sqrt{x-1} - 1}{x - 2} = \lim_{x \to 2} \frac{\left(\sqrt{x-1} - 1\right)\left(\sqrt{x-1} + 1\right)}{(x - 2)\left(\sqrt{x-1} + 1\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x-1}\right)^2 - 1^2}{(x - 2)\left(\sqrt{x-1} + 1\right)}
= \lim_{x \to 2} \frac{x - 1 - 1}{(x - 2)(\sqrt{x - 1} + 1)} = \lim_{x \to 2} \frac{x - 2}{(x - 2)(\sqrt{x - 1} + 1)} = \lim_{x \to 2} \frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}
                                                        \lim \sqrt{3x^2-5x+1} (1: تمرین8: أحسب النهایات التالیة
                                            \lim_{x \to 1} \frac{\sqrt{x-1}}{x-1} (4 \lim_{x \to \infty} -3x\sqrt{6x^2+x-4}) (3 \lim_{x \to \infty} \sqrt{-5x+7}) (2 \lim_{x \to \infty} -3x\sqrt{6x^2+x-4}) (3 \lim_{x \to \infty} -3x\sqrt{6x^2+x
                                                                    \lim_{x \to 3} \frac{1 - \sqrt{x + 4}}{x + 2} (7 \lim_{x \to 4} \frac{1 - 2x}{\sqrt{x - 1}} (6 \lim_{x \to 4} \frac{\sqrt{x} - 2}{x + 4} (5
                                                                                                              \lim_{x \to 5} \frac{2 - \sqrt{x - 1}}{x - 5} (9) \quad \lim_{x \to 3} \frac{x^2 - 3x}{\sqrt{x - 2} - 1} (8)
    \lim 3x^2 - 5x + 1 = \lim 3x^2 = +\infty: \lim \sqrt{3x^2 - 5x + 1} (1)
                                                                                                                                                  \lim \sqrt{3x^2 - 5x + 1} = +\infty: اذن
  \lim_{x\to\infty} \sqrt{-5x+7} = +\infty: اذن \lim_{x\to\infty} -5x+7 = +\infty: الدينا \lim_{x\to\infty} \sqrt{-5x+7} (2
  \lim \sqrt{6x^2 + x - 4} = +\infty 9 \lim -3x = -\infty \lim -3x\sqrt{6x^2 + x - 4} (3)
                                                                                                                                   \lim_{x \to 0} -3x\sqrt{6x^2 + x - 4} = -\infty: اذن
                                           \lim_{x \to 1} x - 1 = 0 \quad {}^{9} \quad \lim_{x \to 1} \sqrt{x} - 1 = 0 \quad \vdots \quad \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} \quad (4)
نحصل عن شکل غ محدد من قبیل : \frac{0}{0}
                                                         نتخلص من ال شغم بالضرب بالمرافق ثم بالاختزال:
                                                     \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 2} \frac{\left(\sqrt{x} - 1\right)\left(\sqrt{x} + 1\right)}{(x - 1)\left(\sqrt{x} + 1\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x}\right)^2 - 1^2}{(x - 1)\left(\sqrt{x} + 1\right)}
                                                                                                                             \lim_{x \to 1} \frac{x - 1}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}
```

 $x^2+2x-3=(x-1)(x+3)$: وأن $\lim_{x \to 1} \frac{2x^2 - 5x + 3}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x - 1)(2x - 3)}{(x - 1)(x + 3)} = \lim_{x \to 1} \frac{2x - 3}{x + 3} = \frac{-1}{4}$ $\lim_{x \to 2} 2x^2 - 5x + 2 = 0$ $\lim_{x \to 2} 3x^2 - 5x - 2 = 0$ $\lim_{x \to 2} \frac{3x^2 - 5x - 2}{2x^2 - 5x + 2}$ (5) $\frac{0}{0}$: عن شکل غ محدد من قبیل نحصل عن شکل غ نتخلص من ال شغ م مثلا بالتعميل ثم بالاختزال: $2x^2 - 5x + 2$ نلاحظ أن : 2 جنر للحدودية $2x^2 - 5x - 2$ و للحدودية 2 x-2: الحدوديتان تقبلان القسمة على و باستعمال تقنية القسمة الاقليدية نجد أن: $2x^2-5x+2=(2x-1)(x-2)$: $2x^2-5x-2=(x-2)(3x+1)$ $\lim_{x \to 2} \frac{3x^2 - 5x - 2}{2x^2 - 5x + 2} = \lim_{x \to 2} \frac{(x - 2)(3x + 1)}{(x - 2)(2x - 1)} = \lim_{x \to 2} \frac{3x + 1}{2x - 1} = \frac{7}{3}$ $\lim_{x \to 1} 2x^2 + x - 3 = 0 \quad \lim_{x \to 1} 2x^3 + x^2 - 3 = 0 \quad \lim_{x \to 1} \frac{2x^3 + x^2 - 3}{2x^2 + x - 3} \quad (6)$ $\frac{0}{0} :$ نحصل عن شکل غ محدد من قبیل ن نتخلص من ال شغ م مثلا بالتعميل ثم بالاختزال: $2x^2 + x - 3$ نلاحظ أن : 1 جذر للحدودية $2x^3 + x^2 - 3$ و للحدودية x-1: الحدوديتان تقبلان القسمة على و بأستعمال تقنية القسمة الاقليدية نجد أن: $2x^2+x-3=(x-1)(2x+3)$: $2x^3+x^2-3=(x-1)(2x^2+3x+3)$ $\lim_{x \to 1} \frac{2x^3 + x^2 - 3}{2x^2 + x - 3} = \lim_{x \to 1} \frac{(x - 1)(2x^2 + 3x + 3)}{(x - 1)(2x + 3)} = \lim_{x \to 1} \frac{2x^2 + 3x + 3}{2x + 3} = \frac{8}{5}$ $\lim_{x\to 2} x - 2 = 0 \quad \lim_{x\to 2} x^4 - 16 = 0 :$ لدينا $\lim_{x\to 2} \frac{x^4 - 16}{x - 2} \quad (7)$ نحصل عن شكل غ محدد من قبيل : نتخلص من ال شغم مثلا بالتعميل ثم بالاختزال: $\lim_{x \to 2} \frac{x^4 - 16}{x - 2} = \lim_{x \to 2} \frac{x^4 - 2^4}{x - 2} = \lim_{x \to 2} \frac{\left(x^2\right)^2 - \left(2^2\right)^2}{x - 2} = \lim_{x \to 2} \frac{\left(x^2 - 2^2\right)\left(x^2 + 2^2\right)}{x - 2}$ $= \lim_{x \to 2} \frac{(x-2)(x+2)(x^2+4)}{x-2} = \lim_{x \to 2} (x+2)(x^2+4) = 32$ $\lim_{x\to 0} \sqrt{x} = 0^{+} : \dot{\mathcal{O}}^{5} \quad \lim_{x\to 0} -\frac{9}{\sqrt{x}} = -\infty$ (8) 5. نهاية الدالة الحدودية $-\infty$ نهاية دالة حدودية عندما تؤول x إلى $+\infty$ أو إلى هى نهاية حدها الأكبر درجة $\lim 3x^2 + 5x - 4$: $\lim_{x \to +\infty} 3x^2 + 5x - 4 = \lim_{x \to +\infty} 3x^2 = +\infty$ 6. نهاية الدالة الجذرية نهاية دالة جذرية عندما تؤول x إلى $\infty +$ أو إلى $\infty -$ هي خارج نهاية حديها الأكبر درجة. $\lim_{x \to +\infty} \frac{2x^6 - x^2 + 1}{x^4 + x - 4}$ $\lim_{x \to +\infty} \frac{2x^6 - x^2 + 1}{x^4 + x - 4} = \lim_{x \to +\infty} \frac{2x^6}{x^4} = \lim_{x \to +\infty} 2x^{6-4} = \lim_{x \to +\infty} 2x^2 = +\infty$ $\lim_{x\to +\infty} 1 + 5x - 9x^2$ (1: التالية النهايات النهايات التالية $\lim_{x \to +\infty} \frac{5x^5 + 3x^2 + x}{-10x^5 - x - 1} \quad (3 \quad \lim_{x \to -\infty} \left(-5x^3 - 4x + 12 \right) \quad (2)$ $\lim_{x \to -\infty} \frac{-3x^6 + 2x^2 + 1}{x^3 + 3x - 1}$ (4 $\lim_{x \to +\infty} \frac{3x^2 + 1}{(x - 1)^2} \quad (7) \qquad \lim_{x \to +\infty} \frac{2x^5 + 4x^2 + 1}{x^8 - x + 3} \quad (6)$ $\lim_{x \to 0} 1 + 5x - 9x^2 = \lim_{x \to 0} -9x^2 = -\infty$ (1:

$$\lim_{x \to 3} x - 4 = 0 \quad \mathcal{I} \quad \lim_{x \to 3} \sqrt{x} - 2 = 0 \Rightarrow \lim_{x \to 4} \sqrt{x} - 2 = 0 \Rightarrow \lim_{x \to 4} \sqrt{x} - 2 = 0 \Rightarrow \lim_{x \to 4} \sqrt{x} - 2 \Rightarrow \lim_{x \to 4} (x - 4) (x - 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (\sqrt{x} + 2) \Rightarrow \lim_{x \to 4} (x - 4) (x + 2) \Rightarrow \lim_{x \to 4} (x - 4) (x + 2) \Rightarrow \lim_{x \to 4} (x - 4) (x + 2) \Rightarrow \lim_{x \to 4} (x - 4) (x + 4) \Rightarrow \lim_{x \to 4} (x - 4) (x + 4) \Rightarrow \lim_{x \to 3} (x - 4) (x + 4) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 3) (x + 4) \Rightarrow \lim_{x \to 3} (x + 4) \Rightarrow \lim_{x \to 4} (x + 4) \Rightarrow$$

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} -(x+4) = -8 \quad \text{J} \quad \lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} x + 4 = 8$$

$$\lim_{x \to 4^{+}} f(x) \neq \lim_{x \to 4^{+}} f(x) : 0 \text{ identify } f \text{ all all plane} f \text{ identify } f \text{ all all plane} f \text{ identify } f \text{ all all plane} f \text{ identify } f \text{ all all plane} f \text{ identify } f \text{ all all plane} f \text{ identify } f \text{ all all plane} f \text{ identify } f$$

 $= \lim_{x \to 3} \frac{x(x-3)(\sqrt{x-2}+1)}{x-3} = \lim_{x \to 3} x(\sqrt{x-2}+1) = 6$ $\lim_{x \to 5} x - 5 = 0 \quad \int_{0}^{9} \lim_{x \to 5} 2 - \sqrt{x - 1} = 0$ البينا $\lim_{x \to 5} \frac{2 - \sqrt{x - 1}}{x - 5} \quad (9)$ نحصل عن شکل غ محدد من قبیل : نتخلص من ال ش غ م بالضرب بالمرافق ثم بالاختزال: $\lim_{x \to 5} \frac{2 - \sqrt{x - 1}}{x - 5} = \lim_{x \to 5} \frac{\left(2 - \sqrt{x - 1}\right)\left(2 + \sqrt{x - 1}\right)}{\left(x - 5\right)\left(2 + \sqrt{x - 1}\right)} = \lim_{x \to 5} \frac{2^2 - \left(\sqrt{x - 1}\right)^2}{\left(x - 5\right)\left(2 + \sqrt{x - 1}\right)}$ $= \lim_{x \to 5} \frac{5 - x}{(x - 5)(2 + \sqrt{x - 1})} = \lim_{x \to 5} \frac{-(x - 5)}{(x - 5)(2 + \sqrt{x - 1})} = \lim_{x \to 5} \frac{-1}{2 + \sqrt{x - 1}} = \frac{-1}{4}$ مبرهنة: لتكن f دالة عددية و l و a عددين حقيقيين $\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = l \quad \text{i.i.} \quad \lim_{x \to a^+} f(x) = l$ $f(x) = \frac{x^2 - 1}{|x - 1|}$ نعتبر الدالة f المعرفة كالتالي: $\lim_{x \to \Gamma} f(x)$ و $\lim_{x \to \Gamma} f(x)$: أحسب النهايات التالية $x_0 = 1$: عند تقبل نهاية عند f قبل الدالة f عند .2 $x = 1 \Leftrightarrow x - 1 = 0 : x - 1$ أجوبة: 1)ندرس اشارة

 $\lim_{x \to 4} x - 4 = 0 \quad \int_{x \to 4}^{9} \lim_{x \to 4} \sqrt{x} - 2 = 0 = \lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \quad (5)$ نحصل عن شکل غ محدد من قبیل :

نتخلص من ال شغم بالضرب بالمرافق ثم بالاختزال:

 $\lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{\sqrt{x} + 2} = \frac{1}{4}$

 $\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{\left(\sqrt{x} - 2\right)\left(\sqrt{x} + 2\right)}{\left(x - 4\right)\left(\sqrt{x} + 2\right)} = \lim_{x \to 4} \frac{\left(\sqrt{x}\right)^2 - 2^2}{\left(x - 4\right)\left(\sqrt{x} + 2\right)}$

 $\lim_{x \to 3} x + 3 = 0 \quad \lim_{x \to 3} 1 - \sqrt{x + 4} = 0 : \lim_{x \to 3} \frac{1 - \sqrt{x + 4}}{x + 3}$ (7) $\frac{0}{0} : \text{ فييل } : \frac{0}{0}$

نتخلص من ال شغم بالضرب بالمرافق ثم بالاختزال:

نتخلص من ال شغم بالضرب بالمرافق ثم بالاختزال:

 $\frac{x^3}{4} \le \frac{x^3}{3 - \sin x} \le \frac{x^3}{2}$: اذن $\lim_{x\to\infty} \frac{x^3}{3-\sin x} = -\infty$: فنع $\lim_{x\to\infty} \frac{x^3}{2} = -\infty$: فنع أن: $\frac{x^3}{3-\sin x} \le \frac{x^3}{2}$: اذن $\lim \sqrt{x^2 + x + 3} - 2x$ (1: قمرين 13: أحسب النهايات التالية $(4 \lim_{x \to x \to 0} \sqrt{x^2 + 2x + 4} + 3x) (3 \lim_{x \to x \to 0} \sqrt{x^2 + 1} - x) (2$ $\lim \sqrt{x^2 + x + 1} - x$ $\lim_{x \to +\infty} \frac{x-1}{\sqrt{x^2+1}}$ (5 $\lim \sqrt{x^2 + x + 3} - 2x$ (1) $\lim_{x\to +\infty} -2x = -\infty$ $\lim_{x\to +\infty} \sqrt{x^2 + x + 3} = +\infty$: Lexis نحصل عن شكل غ محدد من قبيل : $\infty = \infty$ نخطص من ال ش غ م بالتعميل ب χ داخل الجذر مربع: $\lim_{x \to +\infty} \sqrt{x^2 + x + 3} - 2x = \lim_{x \to +\infty} \sqrt{x^2 \left(1 + \frac{1}{x} + \frac{3}{x^2}\right)} - 2x = \lim_{x \to +\infty} \sqrt{x^2} \sqrt{\left(1 + \frac{1}{x} + \frac{3}{x^2}\right)} - 2x$: فان $x \to +\infty$: فان $\sqrt{x^2} = |x|$: فأن $= \lim_{x \to \infty} |x| \sqrt{1 + \frac{1}{x} + \frac{3}{x^2}} - 2x$ $\lim_{x \to +\infty} \sqrt{x^2 + x + 3} - 2x = \lim_{x \to +\infty} x \sqrt{1 + \frac{1}{x} + \frac{3}{x^2}} - 2x = \frac{1}{x}$ $\lim_{x \to +\infty} \frac{3}{x^2} = 0 \quad \lim_{x \to +\infty} \frac{1}{x} = 0 \quad \text{if } \frac{1}{x} = 0$ $\lim_{x\to +\infty} -x = -\infty$ ا $\lim_{x\to +\infty} \sqrt{x^2 + 1} = +\infty$: لدينا $\lim_{x\to +\infty} \sqrt{x^2 + 1} - x$ (2) نحصل عن شكل غ محدد من قبيل : $\infty - \infty +$ نخلص من ال ش غ م بالضرب بالمرافق : $\lim_{x \to +\infty} \sqrt{x^2 + 1} - x = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + 1} - x\right)\left(\sqrt{x^2 + 1} + x\right)}{\left(\sqrt{x^2 + 1} + x\right)} =$ $\lim_{x \to +\infty} \sqrt{x^2 + 1} + x = +\infty : \dot{0}^{\frac{1}{2}} = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + 1}\right)^2 - x^2}{\left(\sqrt{x^2 + 1} + x\right)} = \lim_{x \to +\infty} \frac{1}{\left(\sqrt{x^2 + 1} + x\right)} = \frac{1}{+\infty} = 0$ $\lim_{x\to 0} 3x = +\infty$ $\lim_{x\to 0} \sqrt{x^2 + 2x + 4} = +\infty$: لدينا $\lim_{x\to 0} \sqrt{x^2 + 2x + 4} + 3x$ (أ (3 $\lim \sqrt{x^2 + 2x + 4} + 3x = +\infty$ $\lim 3x = -\infty$ السينا : نبيا (غالم نبينا) الدينا (غالم نبينا) الدينا (غالم نبينا) نحصل عن شكل غ محدد من قبيل : $_\infty$ _ $_\infty$ + نتخلص من ال ش غ م بالتعميل ب $_\chi$ داخل الجذر مربع: $\lim_{x \to +\infty} \sqrt{x^2 + 2x + 4} + 3x = \lim_{x \to +\infty} \sqrt{x^2 \left(1 + \frac{2}{x} + \frac{4}{x^2}\right)} + 3x = \lim_{x \to +\infty} \sqrt{x^2} \sqrt{\left(1 + \frac{2}{x} + \frac{4}{x^2}\right)} + 3x$ $x \longrightarrow \infty$: فان $x \longrightarrow \infty$ وبما أن $\sqrt{1 + \frac{2}{x} + \frac{4}{x^2}} + 3x$ $\lim_{x \to \infty} \sqrt{x^2 + 2x + 4} + 3x = \lim_{x \to \infty} -x \sqrt{1 + \frac{2}{x} + \frac{4}{x^2}} + 3x =$ $\lim_{x \to \infty} \frac{4}{x^2} = 0 \quad \text{J} \quad \lim_{x \to \infty} \frac{2}{x} = 0 \quad \text{if} \quad \lim_{x \to \infty} \frac{2}{x} = 0 \quad \text{J} \quad \lim_{x \to \infty} \frac{4}{x} = 0 \quad \text{J} \quad \lim_{x \to \infty} \frac{4}{x^2} = 0 \quad \text{J} \quad \lim_{x \to \infty} \frac{2}{x} = 0 \quad$

 $\lim_{x \to -\infty} -\infty = \lim_{x \to -\infty} \sqrt{x^2 + x + 1} = +\infty : \lim_{x \to -\infty} \sqrt{x^2 + x + 1} - x$ (4)

نحصل عن شكل غ محدد من قبيل : $\infty - \infty$ نتخلص من ال ش غ م بالضرب **بالمرافق** :

 $\lim_{x\to 0} \frac{\sin 3x}{x} (1 : 1)$ أحسب النهايات التالية $\lim_{x \to 0} \frac{\tan 10x}{\sin 5x} \quad (3 \quad \lim_{x \to 0} \frac{\sin x}{\tan x} \quad (2$ $-\lim_{x\to 0} \frac{\sin 3x}{x} = \lim_{x\to 0} \frac{\sin 3x}{3x} \times 3 = 1 \times 3 = 3 \frac{(1:3x)^{-1}}{3x}$ $\lim_{x\to 0} \frac{\sin x}{\tan x} = \lim_{x\to 0} \frac{\sin x}{x} \times \frac{x}{\tan x} = 1 \times 1 = 1(2$ $\lim_{x \to 0} \frac{\tan 10x}{\sin 5x} = \lim_{x \to 0} \frac{\tan 10x}{10x} \times \frac{5x}{\sin 5x} \times \frac{10x}{5x} = 1 \times 1 \times 2 = 2 (3)$ 9. النهايات و الترتيب $l \in \mathbb{R}$ و $a \in \mathbb{R}$ حيث $a \in \mathbb{R}$ عيث انكن $a \in \mathbb{R}$ عيث مجالاً من نوع I دوال عددیة معرفة على المجال I اذا U: فان $\lim_{U(x)=+\infty}$ فان $\forall x \in I$ $U(x) \le f(x)$ $\lim f(x) = +\infty$ $\lim V(x) = -\infty$ وکانت $\forall x \in I \ f(x) \le V(x)$ $\lim f(x) = -\infty$: اذا کانت $\forall x \in I \ U(x) \le f(x) \le V(x)$ وکانت: $\lim_{x \to \infty} f(x) = l : \dot{\Box} \quad \lim_{x \to \infty} U(x) = \lim_{x \to \infty} V(x) = l$ $\lim 2x + \sin(x)$: أحسب النهاية التالية $\forall x \in \mathbb{R}$ $-1 \le \sin x \le 1$: الجواب: نعلم أن $2x-1 \le \sin x + 2x$: اذن $2x-1 \le \sin x + 2x \le 1 + 2x$ $\lim 2x + \sin(x) = +\infty$: ونعلم أن $\lim 2x - 1 = +\infty$ ونعلم $\lim_{x\to 0} -4x^2 + \cos x$: أحسب النهاية التالية $\forall x \in \mathbb{R}$ $-1 \le \cos x \le 1$: الجواب: نعلم أن $-4x^2 + \cos x \le 1 - 4x^2$: اذن $-4x^2 + \cos x \le 1 - 4x^2$: اذن $\lim_{x \to -\infty} -4x^2 + \cos x = -\infty$: $\lim_{x \to -\infty} 1 - 4x^2 = -\infty$: $\lim_{x \to -\infty} 1 - 4x^2 = -\infty$ $\lim_{x\to +\infty} x^2 \sin\left(\frac{1}{x}\right)$: مثال 3: أحسب النهاية التالية $\forall x \in \mathbb{R}$ $-1 \le \sin\left(\frac{1}{x}\right) \le 1$: نعلم أن $\lim_{x\to 0} -x^2 = 0$ ولدينا $\lim_{x\to 0} x^2 = 0$ ولدينا $-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$: اذن $\lim_{x\to +\infty} x^2 \sin\left(\frac{1}{x}\right) = 0$: ومنه تمرين12: أحسب النهايات التالية: $\lim_{x \to -\infty} \frac{x^3}{3 - \sin x} \quad (2 \quad \lim_{x \to +\infty} \frac{x}{2 - \cos x} \quad (1$: اذن $\forall x \in \mathbb{R}$ $-1 \le \cos x \le 1$: انن الجواب: : اذن $\frac{1}{3} \le \frac{1}{2-\cos x} \le \frac{1}{1}$: اذن $1 \le 2-\cos x \le 3$ $\frac{x}{3} \le \frac{x}{2 - \cos x} \le \frac{x}{1}$ $\lim_{x\to\infty} \frac{x}{2-\cos x} = +\infty$: فنع $\lim_{x\to\infty} \frac{x}{3} = +\infty$ أن $\lim_{x\to\infty} \frac{x}{3} = +\infty$ ونعلم أن $\frac{x}{3} = +\infty$ $-1 \le -\sin x \le 1$: اذن $\forall x \in \mathbb{R}$ $-1 \le \sin x \le 1$: نعلم أن (2 $\frac{1}{4} \le \frac{1}{3-\sin x} \le \frac{1}{2}$: اذن $2 \le 3-\sin x \le 4$

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{x^2 + 4x + 3}{x + 1}$$

$$\lim_{x \to -1^+} x + 1 = 0 \quad \lim_{x \to -1^+} x^2 + 4x + 3 = 0$$
 Legible $\frac{0}{0}$ Legi

$$\lim_{x \to -1^{+}} \frac{x^{2} + 4x + 3}{x + 1} = \lim_{x \to -1^{+}} \frac{(x + 3)(x + 1)}{x + 1} = \lim_{x \to -1^{+}} x + 3 = 2$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{x^{2} - 3}{x} = \frac{1 - 3}{-1} = \frac{-2}{-1} = 2$$

$$x_{0} = -1 : \text{sign} \text{ is all is } f(x) = 1$$

$$\lim_{x \to -1^{+}} f(x) = 2 : \text{sign} \text{ is all } f(x) = 1$$

$$\frac{\text{تمرین 1:}}{\sum_{x \to \infty} \frac{1}{x^4 + 3x - 1}} \frac{1}{x^4 + 3x - 1} \frac{1}{x^2 - x - 2} \frac{1}{x^2 - x - 2}$$

 $\frac{1}{2}$ المعرفة كالتالى:

$$\begin{cases} f(x) = \sqrt{x}; x \ge 0 \\ f(x) = x^3; x < 0 \end{cases}$$

 $\lim_{x\to 0^-} f(x)$ و $\lim_{x\to 0^+} f(x)$: أحسب النهايات التالية:

 $\lim_{x\to 0} f(x)$: lim $\int_{0}^{x} f(x) dx$

$$\frac{1}{\sum_{x \to \infty} x - \sqrt{x^2 - x}}$$
: النهايات التالية $\frac{1}{\sum_{x \to \infty} x - \sqrt{x^2 - x}}$ (2 $\lim_{x \to \infty} \sqrt{x^2 + x} - x$ (1)

$$\lim_{x \to -\infty} \sqrt{5x^2 + x - 1} - 2x + 1 \left(4 \qquad \lim_{x \to +\infty} x - \sqrt{x^2 - x} \right) (3)$$

$$\lim_{x \to -\infty} \sqrt{x^2 + x - 1} + x \quad (6 \quad \lim_{x \to -\infty} \sqrt{5x^2 + x - 1} + 2x + 1) \quad (5)$$

تمرين4: نعتبر الدالة f المعرفة كالتالى:

$$\begin{cases} f(x) = x^3 - \frac{1}{8}; x > \frac{1}{2} \\ f(x) = 1 - 2x; x \le \frac{1}{2} \end{cases}$$

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$: أحسب النهايات التالية

$$\lim_{x \to \frac{1}{2}^{-}} f(x) \quad \lim_{x \to \frac{1}{2}^{+}} f(x) \quad 9$$

$$\begin{split} \lim_{x \to +\infty} \sqrt{x^2 + x + 1} - x &= \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + x + 1} - x\right)\left(\sqrt{x^2 + x + 1} + x\right)}{\left(\sqrt{x^2 + x + 1} + x\right)} = \\ &= \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + x + 1}\right)^2 - x^2}{\left(\sqrt{x^2 + x + 1} + x\right)} = \lim_{x \to +\infty} \frac{x + 1}{\left(\sqrt{x^2 + x + 1} + x\right)} = \frac{+\infty}{+\infty} \\ &= \lim_{x \to +\infty} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1} + x = +\infty \ \vdots \\ &\stackrel{\text{lim}}{\text{\downarrow}} \sqrt{x^2 + x + 1}$$

نعمل χ^2 داخل الجذر مربع وب χ في البسط ونجد:

$$\lim_{x \to +\infty} \sqrt{x^2 + x + 1} - x = \lim_{x \to +\infty} \frac{x + 1}{\left(\sqrt{x^2 + x + 1} + x\right)} = \lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{\left(\sqrt{x^2\left(1 + \frac{1}{x} + \frac{1}{x^2}\right)} + x\right)}$$

$$= \lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{\sqrt{x^2}\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x} = \lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{\left|x\right|\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x} = \lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x}$$

$$= \lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{\sqrt{x^2}\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x} = \lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{\left|x\right|\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x}$$

$$= \lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{\sqrt{x^2}\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x} = \lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{\left|x\right|\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x}$$

$$\lim_{x \to +\infty} \frac{x\left(1 + \frac{1}{x}\right)}{x\left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1\right)} = \lim_{x \to +\infty} \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1} = \lim_{x \to +\infty} \frac{1 + 0}{\sqrt{1 + 0 + 0} + 1} = \frac{1}{2}$$

$$\lim_{x \to \infty} x - 1 = +\infty \lim_{x \to \infty} \sqrt{x^2 + 1} = +\infty : \lim_{x \to \infty} \frac{x - 1}{\sqrt{x^2 + 1}}$$
 (5)
$$\lim_{x \to \infty} x - 1 = +\infty \lim_{x \to \infty} \sqrt{x^2 + 1} = +\infty : \lim_{x \to \infty} \frac{x - 1}{\sqrt{x^2 + 1}}$$
 نحصل عن شکل غ محدد من قبیل : $\frac{\infty}{\infty}$

: نعمل ب χ^2 داخل الجذر مربع وب χ في البسط ونجد

$$\lim_{x \to +\infty} \frac{1}{x^2} = 0 \quad = \lim_{x \to +\infty} \frac{1}{x} = 0 \quad = 0$$

تمرين14: نعتبر الدالة f المعرفة كالتالى:

$$\begin{cases} f(x) = \frac{x^2 + 4x + 3}{x + 1}, x \ge -1 \\ f(x) = \frac{x^2 - 3}{x}, x < -1 \end{cases}$$

 $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f(x)$ 1. definition of the limits of the limits

$$\lim_{x \to -1^{-}} f(x) \lim_{x \to -1^{+}} f(x)$$

برجو
$$x_0=-1$$
 : هل الدالة f تقبل نهاية عند . 2

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 4x + 3}{x + 1} = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty (1 + 1)$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 - 3}{x} = \lim_{x \to -\infty} \frac{x^2}{x} = \lim_{x \to -\infty} x = -\infty$$

أكاديمية الجهة الشرقية نيابة وجدة

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مذكرة رقم /8

مذكرة رقو8 في درس الدوران

الأهداف القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
_يعرف الدوران انطلاقامن مركزه	- إنشاء صور أشكال اعتيادية بدوران معلوم؛	- تعريف الدوران؛ الدوران العكسي لدوران
وزاويته	_ التعرف على تقايس الأشكال باستعمال	- الحفاظ على المسافة وعلى قياس زاوية موجهة
- يعتبر إدخال الإحداثيات والصيغة التحليلية	الدوران؛	وعلى المرجح.
للدوران وتركيب دورانين خارج المقرر.	_ استعمال دوران معلوم في وضعية هندسية	ـ صورة مستقيم وقطعة ودائرة بدوران.
100	بسيطة.	

I. الدوران و الدوران العكسى

نقطتين من المستوى الموجه

أرسم النقطة
$$A'$$
 بحيث : $\frac{\Omega A = \Omega A'}{\left(\overline{\Omega A},\overline{\Omega A'}\right) \equiv \frac{\pi}{6}[2\pi]}$ نقول A' هي صورة

lpha بالدوران lpha الذي مركزه Ω زاويته lpha بنفس الطريقة نرسم lpha صورة lpha بالدوران lpha الذي مركزه lpha زاويته lpha

1)تعريف الدوران

لتكن Ω نقطة من المستوى الموجه و α عددا حقيقيا

الدوران الذي مركزه Ω زاويته lpha هو التحويل في المستوى الذي يربط كل نقطة M من المستوى بالنقطة M المعرفة كالتالى

r نرمز للدوران الذي مركزه Ω زاويته α بالرمز $r\left(\Omega;\alpha\right)$ أو r إذا لم يكن هناك التباس

rتقرأ: M هي صورة M بالدوران r(M)=M'

- $M'=\Omega$ فان $M=\Omega$ إذا كان •
- $\begin{cases} \Omega M = \Omega M' \\ \left(\overline{\Omega M', \Omega M'} \right) \equiv \alpha \left[2\pi \right] \end{cases} \quad \text{if} \quad M \neq \Omega \quad \text{if} \quad \bullet$

2)الدوران العكسى لدوران

 $oldsymbol{r}$ تعریف : لتکن Ω نقطة من المستوی الموجه و $oldsymbol{lpha}$ عددا حقیقیا الدوران $r(\Omega;-lpha)$ الذی مرکزه Ω زاویته $oldsymbol{lpha}$ الذی مرکزه Ω زاویته $oldsymbol{lpha}$

- r^{-1} الدوران العكسى لدوران r يرمز له بالرمز
 - لكل نقطة M من المستوى لدينا :
 - $r^{-1}(M') = M \iff r(M) = M'$

ال خاصيات؛

خاصية 1: الحفاظ على المسافة: إذا كانت A و B نقطتين من المستوى و A' و B' على التوالي بدوران فان : AB = A'B'

نقول الدوران يحافظ على المسافة

خاصية 2: ليكن r دورانا زاويته α إذا كانت A و B' صورتي نقطتين مختلفتين A و B على التوالي بالدوران A فان: $[2\pi]_{N} = \frac{A'B'}{A'B'}$

 $\left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{A'B'}}\right) \equiv \alpha \left[2\pi\right] : \dot{\Box}$

ملحوظة: تمكننا هذه الخاصية من تحديد زاوية دوران انطلاقا من نقطتين مختلفتين وصورتيهما

: مثلث متساوي الساقين وقائم الزاوية في A بحيث ABC: $\frac{\overline{AB,AC}}{\overline{AB},\overline{AC}} = \frac{\pi}{2}[2\pi]$

[BC] وليكن O منتصف القطعة

الذي مركزه Aوزاويته A بالدوران r الذي مركزه Aوزاويته A

 $\frac{\pi}{2}$ انشئ صورة المثلث ABC بالدوران r' الذي مركزه O وزاويته σ

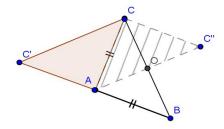
r: الدوران A مركز الدوران r(A) = A الجوبة

$$\left\{ egin{aligned} AB = AC \ \left(\overline{AB}, \overline{AC} \right) &\equiv rac{\pi}{2} [2\pi] \end{aligned}
ight.$$
 : $\dot{\mathcal{C}}$

ACC': ومنه صورة المثلث ABC بالدوران r هو المثلث r(B)=C

$$r'(C) = C'' \circ r'(B) = A \circ r'(A) = C$$
 (1)

ACC'': هو المثلث ABC بالدوران r هو المثلث

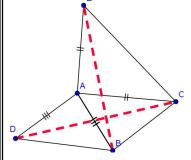


ACE مثلثا ننشئ خارجه مثلثين ABD و ACE متساوير الساقين وقائمي الزاوية في A

BE = CD: بين إن

 $(BE) \perp (CD)$: بين أن $(BE) \perp (CD)$

الجواب:



نعتبر الدوران r الذي مركزه A وزاويته $\frac{\pi}{2}$

 $\begin{cases} AD = AB \\ \left(\overline{AD}, \overline{AB}\right) \equiv \frac{\pi}{2} \left[2\pi\right] \end{cases}$: لدينا

 $\mathbf{0} \ r(D) = B$: ومنه

 $\mathbf{2} \ r(C) = E$: ولدينا $\begin{cases} AC = AE \\ \left(\overline{AC, \overline{AE}}\right) \equiv \frac{\pi}{2}[2\pi] \end{cases}$:

BE = CD: من 0و 0 وبما أن الدوران يحافظ على المسافة فان r(D) = B فاذن : r(D) = B و المسافة فان : r(D) = B

 $\left(BE\right) \perp \left(CD\right)$: وهذا يعني أن $\left(\overline{\overline{CD},\overline{EB}}\right) \equiv \frac{\pi}{2}$

خاصية3: الحفاظ على قياس زاوية موجهة

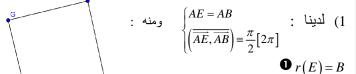
 $C \neq D$ و $A \neq B$ و من المستوى بحيث $A \neq B$ و $A \neq D$ و $A \neq D$ و من المستوى بحيث $A \neq B$ و $A \neq D'$ و $A \neq C'$ و $A \neq C'$ و $A \neq C'$ صور ها على التوالي بدوران لدينا : $(\overline{AB,\overline{CD}}) = (\overline{A'B',\overline{CD'}})[2\pi]$

- - (نقول الدوران يحافظ على قياس الزوايا

تمرين3: ABC مثلث بحيث القياس الرئيسي للزاوية الموجهة $\left(\overline{\overline{AB}, \overline{AC}} \right)$

ACFG و ABDE المربعين ABC و المثلث $\frac{\pi}{2}$ نعتبر الدوران r الذي مركزه A و زاوية

 $\left(\overline{\overrightarrow{CA},\overrightarrow{CE}}\right) \equiv \left(\overline{\overrightarrow{GA},\overrightarrow{GB}}\right)[2\pi]$: نين أن r(C) و r(C)



: دينا $\begin{cases} AC = AG \\ \left(\overline{\overline{AC}, \overline{AG}}\right) = \frac{\pi}{2} [2\pi] \end{cases}$

 $\mathbf{P} r(C) = G$ ولدينا: $\mathbf{S} r(A) = A$ لأن A مركز

 $\left(\overline{\overrightarrow{CA}, \overrightarrow{CE}}\right) = \left(\overline{\overrightarrow{GA}, \overrightarrow{GB}}\right)[2\pi]$

خاصية 4: الحفاظ على المرجح

(B;eta) و (A;lpha) ليكن G مرجح النقطتين المتزنتين G

 $m{r}$ إذا كانت A' و B' و B' صور A' و B' و B' على التوالي بدوران A' فان A': فان A': A' هي مرجح النقطتين المتزنتين A': فان A': A': منات منات الدام ترادا منات الدام ت

ملحوظة: يمكننا تعميم هذه الخاصية على مرجح ثلاث أو أربع نقط. استنتاج: الحفاظ على المنتصف

[AB] ليكن المنتصف القطعة

إذا كانت A' و B' و A' صور A' و B' و A' على التوالي بدوران فان : A' هي منتصف القطعة A'B'

خاصية 5: الحفاظ على معامل استقامية متجهتين

لتكن A و B' و A صور A و B و A على التوالي بدوران A'C'=k A'B' : إذا كان : $A \subset k$ حيث $A \subset k$ حيث $A \subset k$ حيث $A \subset k$ مربع مركزه $A \subset k$ بحيث : $A \subset k$ مربع مركزه $A \subset k$

 $\overrightarrow{BJ} = \frac{1}{4} \overrightarrow{BC}$ و $\overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB}$: و $\overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB}$ و $\overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB}$

 $\frac{\pi}{2}$ و راویة O و راویة O و الدوران الذي مرکزه

 $ig(OIig)oldsymbol{\perp}ig(OJig)$: وأن OI=OJ: بين أن

r(I) = J : ????? يكفى أن نبين أن

r(I) = I': نضع

 $\begin{cases} OA = OB \\ \left(\overline{\overline{OA}}, \overline{\overline{OB}} \right) = \frac{\pi}{2} [2\pi] \end{cases}$: لدينا

r(A) = B

ولدينا : $\overrightarrow{AI} = \frac{1}{4} \overrightarrow{BC}$ اذن: $\overrightarrow{BI}' = \frac{1}{4} \overrightarrow{BC}$ لأن الدوران : الحفاظ على

معامل استقامية متجهتين

 $\mathbf{Q} \overrightarrow{BJ} = \frac{1}{4} \overrightarrow{BC}$: ونعلم أن

r(I)=J من \bullet و \bullet نستنتج أن $\overline{BI'}=\overline{BJ}$: من \bullet و \bullet

 $\begin{cases} OI = OJ \\ \left(\overline{\overrightarrow{OI}, \overrightarrow{OJ}} \right) \equiv \frac{\pi}{2} [2\pi] \end{cases}$: وبالتالي

ABC تمرين ABC مثلث قائم الزاوية A ومتساوي الساقين فبحيث O و $\overline{(\overline{AB}, A\overline{C})} \equiv \frac{\pi}{2}[2\pi]$

 $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$: وليكن $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AB}$ وليكن \overrightarrow{D}

ODE باعتبار الدوران r الذي مركزه O وزاويته $\frac{\pi}{2}$ بين أن المثلث

قائم الزاوية ومتساوي الساقين في O

الجواب : يكفي أن نبين أن : الجواب r(E) = D

r(E) = E': نضع

الدينا : OA = OC ومنه $\left(\overline{\overline{OC}, \overline{OA}} \right) \equiv \frac{\pi}{2} [2\pi]$

 $\bullet r(C) = A$

: ولدينا $\begin{cases} OA = OB \\ \left(\overline{\overline{OA}, \overline{OB}}\right) \equiv \frac{\pi}{2} \left[2\pi\right] \end{cases}$: ولدينا

ولدينا : $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$ اذن من $\mathbf{0}$ و اذن من $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$

لأن الدوران : يحافظ على معامل استقامية متجهتين يحافظ $\overrightarrow{AE'} = \frac{2}{3}\overrightarrow{AB}$

 $\mathbf{G} \overrightarrow{AD} = \frac{2}{3} \overrightarrow{AB}$: ونعلم أن

r(E) = D من E' = D من $\overline{AE'} = \overline{AD}$: من $\overline{AE'}$

وبالتالي : OE=OD يعني ان : أن المثلث $ODE=\overline{OE}$ قائم الزاوية $\left(\overline{\overline{OE}},\overline{\overline{OD}}\right)\equiv \frac{\pi}{2}[2\pi]$

O ومتساوي الساقين في

[[] صور بعض الأشكال بدوران:

ليكن $m{r}$ دورانا و $m{A}$ و $m{B}$ و $m{O}$ و $m{A}$ و $m{B}'$ و r(O)=O' نقطا من المستوى بحيث : r(A)=A' و r(O)=O' و r(B)=B' و r(A)=A' خاصية :

(A'B') هي المستقيم المستقيم الدوران (AB) هي المستقيم ا

 $\llbracket A'B'
brace$ هي المستقيم المستقيم المستقيم الم $\llbracket A'B'
brace$

 $m{r}$ التي مركزها O وشعاعها R بالدوران $C\left(O;R
ight)$ هي الدائرة C'(O';R) التي مركزها O' وشعاعها C'(O';R)

استنتاج

[A'B'] مي نصف المستقيم الدوران (AB) بالدوران المستقيم المستقيم

مستقيمين متعامدين بالدوران $m \emph{r}$ هما مستقيمان متعامدان $m \emph{r}$

صورتا مستقیمین متوازبین بالدوران γ هما مستقیمان متوازیان τ

إذا كانت نقطة M تنتمي إلى تقاطع مستقيمين (D) و (Δ) فان صورة M بالدوران M هي نقطة تقاطع صورتي

الأستاذ: عثماني نجيب

. r المستقيمين darkown و darkown بالدوران

(D) و $(\overline{\overrightarrow{OA}}, \overline{OB}) = \frac{\pi}{2}[2\pi]$: مربع مرکزه O بحیث ABCD

ig(ABig) مستقیم یوازی المستقیم ig(BDig) و یقطع ig(ADig) في ig(ABig)

 $rac{\pi}{2}$ و زاویة C و زاویة C و زاویة الدوران الذي مركزه

 Γ نعتبر النقطتين N و F صورتي النقطتين M و N بالدوران على التوالى.

 $(EF) \perp (MN)$: أرسم الشكل و بين أن 1

r الدوران) عدد صورة المستقيم (BD) بالدوران.

 $(EF) \| (AC) : (DN = FA) + (DN = FA)$.3

D C C

: من \mathbf{Q} و نستنتج أن : $\left(\frac{\mathbf{M}}{\overline{M}}, \overline{EF}\right) \equiv \frac{\pi}{2} [2\pi]$ (EF) $\pm (MN)$

(2) صورة المستقيم (BD)بالدوران (BD)

: اذن $\begin{cases} 0B = 0C \\ \left(\overline{\overrightarrow{0B}}, \overline{OC} \right) \equiv \frac{\pi}{2} [2\pi] \end{cases}$: ا

 $\bullet r(B) = C$

 $\mathbf{2} \ r(D) = A : نن : \begin{cases} 0D = 0A \\ \left(\overline{\overline{OD}}, \overline{OA}\right) \equiv \frac{\pi}{2} [2\pi] \end{cases}$: ولدينا

r((BD)) = (AC) من \bullet و \bullet نستنتج أن:

 $???DN = FA(^{\dagger}(3))$

 $\mathbf{O}(r(N) = F$ و لدينا $\mathbf{O}(r(D) = A$: ولدينا

اذن : DN = FA لأن : الدوران يحافظ على المسافة

 $:(EF)\|(AC):$ ب)نبین أن

ادينا : (MN)حسب المعطيات و لدينا الدينا الدينا (

r((MN))=(EF) r((BD))=(AC)

 $(EF) \| (AC) :$ وبما أن : الدوران يحافظ على التوازي فان :

تمارين للبحث

 $(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AD}}) \equiv \frac{\pi}{2} [2\pi]$ مربع بحیث ABCD تمرین

r(D) = B و A و الذي مركزه A و A

r'(D) = B و C الذي مركزه r' الدوران r مثلث متساوي الأضلاع بحيث : ABC

عر<u>ين2:</u> ABC ملك مساوي الإصارع بحيث - - - - - - - - - - - - - -

 $\left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}}\right) \equiv -\frac{\pi}{3} [2\pi]$

C الذي مركزه B و يحول A الذي مركزه B الدي مركزه الدوران T

C .حدد مركز و زاوية الدوران $rac{r_2}{r_2}$ الذي يحول A إلى B و B إلى.

 $(\overline{\overrightarrow{AD}}, \overline{\overrightarrow{AF}}) \equiv \frac{\pi}{2}[2\pi]$: مربع بحيث ADEF

BEF ننشئ خارجه المثلث CED متساوي الأضلاع و داخله المثلث متساوي الأضلاع

 $rac{\pi}{3}$ الذي مركزه E و زاوية r الذي مركزه 1

r(D) = C و r(F) = B: بين أن

 $r(A_1) = A$: النقطة بحيث A_1 النقطة بحيث .2

a) بين أن المثلث محكم متساوي الأضلاع

بين أن النقط: $A_{
m l}$ و D و A مستقيمية (b

استنتج أن النقط: A و B و C مستقيمية (c

ص 54 <u>http:// xyzmath.e-monsite.com</u>

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مذكرة رقم /9

مذكرة رقم 9 في درس الاهتقاق

الأهداف و القدرات المنتظرة من الدرس:

القدرات المنتظرة توجيهات تربوية محتوى البرنامج ـ من بين الأمثلة التي يمكن معالجتها: تقريب - تقريب دالة بجوار نقطة x بدالة تالفية؛ - قابلية اشتقاق دالة في نقطة x ؛ العدد المشتق؛ $h \rightarrow (1+h)^2$: السدو ال المعرفة بما يلسى: - التعرف على أن العدد المشتق لدالة في xo هو التأويل الهندسي للعدد المشتق والمماس لمنحني؟ $h \to \sqrt{1+h}$ $g h \to \frac{1}{1+h}$ $g h \to (1+h)^3$ gتقريب دالة قابلة للاشتقاق في نقطة بدالة تآلفية؛ المعامل الموجه لمماس منحنى الدالة في النقطة - الاشتقاق على اليمين؛ الاشتقاق على اليسار؛ التي أفصولها م بجوار الصفر بدوال تألفية. نصف مماس؛ مماس أو نصف مماس عمودي؛ - التعرف على مشتقات الدوال المرجعية؛ ي تحديد مشتقة $\lim_{x\to 0} \frac{\sin x}{x}$ في تحديد مشتقة الاشتقاق على مجال؛ المشتقة الأولى؛ المشتقة - التمكن من تقنيات حساب مشتقة دالة؛ الثانية؛ المشتقات المتتالية؛ ـ تحديد معادلة المماس لمنحنى دالة في نقطة $x \to \cos x$ و $x \to \sin x$ $\frac{f}{g}$ $\frac{1}{f}$ $\frac{1$ و إنشاؤه؛ - تحديد رتابة دالة انطلاقا من در اسة إشارة $\sqrt{f} \cdot f(ax+b) \cdot (n \in Z) f^n$ _ تقبل المبر هنات المتعلقة بالرتابة وإشارة ـ رتابة دالة وإشارة مشتقتها؛ مطاريف دالة قابلة - تحديد إشارة دالة انطلاقا من جدول تغيراتها أو المشتقة الأولى؛ للاشتقاق على مجال. من تمثيلها المبياني؛ - حل مسائل تطبيقية حول القيم الدنوية والقيم _ يقبل الحل العام للمعادلة التفاضلية: . $v''+\omega^2 v=0$: المعادلة التفاضلية: $v''+\omega^2 v=0$

[. قابلية اشتقاق دالة عددية في نقطة

1. العدد المشتق

تعریف : لتکن f دالة عددیة معرفة علی مجال مفتوح I و a عنصرا من I

: بحيث الدالة f قابلة للاشتقاق في النقطة a إذا وجد عدد حقيقي المحيث

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$$

f'(a):يسمى العدد المشتق للدالة في النقطة a و نرمز له بالرمز l

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) :$$
ونکتب

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) : 3$$
ملاحظة : الكتابة : $f'(a) = f'(a)$

$$\lim_{h\to 0} \frac{x-a}{h} = f'(a)$$
 تكافئ الكتابة : $f'(a)$

 $f(x) = 5x^2$: مثال: نعتبر الدالة f المعرفة كالتالى

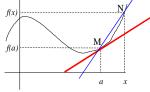
 $x_0 = 1$ عند f عند اشتقاق الدالة عند التعريف أدرس

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{5x^2 - 5}{x - 1} = \lim_{x \to 1} \frac{5(x^2 - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{5(x^2 - 1^2)}{x - 1} = \lim_{x \to 1} \frac{5(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} 5(x + 1) = 5 \times 2 = 10$$

 $x_0 = 1$: ومنه f قابلة للاشتقاق عند

$$x_0 = 1$$
 وهو العدد المشتق عند $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 10 = f'(1)$



 $M\left(a;f\left(a
ight)
ight)$ المار من النقطة $\left(\Delta
ight)$ المار من النقطة و الذي معامله الموجه هو f'(a) يسمى المماس للمنحنى M

a خاصية: لتكن f دالة قابلة للاشتقاق في نقطة

: هي $M\left(a;f\left(a
ight)
ight)$ عادلة المماس $\left(\Delta
ight)$ للمنحنى في النقطة

$$(\Delta) : y = f(a) + f'(a)(x-a)$$

 $f(x) = x^2 - 2x + 1$: نعتبر الدالة f المعرفة كالتالي نعتبر الدالة

 $x_0=2$ عند $x_0=2$ قابلة للاشتقاق عند $x_0=1$. باستعمال التعریف بین أن الدالة

. $x_0=2$ عند f عند الممثل الدالة المماس للمنحنى الممثل الدالة . 2

$$f(2) = 2^2 - 2 \times 2 + 1 = 1$$
 الجواب

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^2 - 2x + 1 - 1}{x - 2} = \lim_{x \to 2} \frac{x^2 - 2x}{x - 2}$$

 $x_0 = 1$: ومنه f قابلة للاشتقاق عند = $\lim_{x \to 2} \frac{x(x-2)}{x-2} = \lim_{x \to 2} x = 2$

 $x_0 = 2$ وهو العدد المشتق عند 2 = f'(2)

$$y = f(x_0) + f'(x_0)(x - x_0)$$
 (2)

 $y = 2x - 3 \Leftrightarrow y = 1 + 2(x - 2) \Leftrightarrow y = f(2) + f'(2)(x - 2)$

II. الاشتقاق على اليمين الاشتقاق على اليسار

 $f(x) = x^3 + |x|$: مثال: المعرفة كالتالي ونعتبر الدالة ألم

 $(x_0=0$ عند اليمين عند f على اليمين عند $\int_{x\to 0} \frac{f(x)-f(0)}{x-0}$ عند الدالة أحسب.

 $(x_0=0)$ أحسب f على اليسار عند f أجسب أيانية اشتقاق الدالة الميسار عند f أحسب أf(x)-f(0)

 $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{x^2 - 1 - 0}{x - 1} = \lim_{x \to 0^+} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1^+} x + 1 = 2(1)$ $2 = f'_d(1) \quad \text{of } x = 1 \quad \text{of } x = 1$ $x_0 = 1 \quad \text{of } x = 1$ $x_0 = 1 \quad \text{of } x = 1$

 $\lim_{x\to 1}\frac{f(x)-f(1)}{x-1}=\lim_{x\to 1}\frac{-(x^2-1)-0}{x-1}=\lim_{x\to 1}\frac{-(x-1)(x+1)}{x-1}=\lim_{x\to 1}-(x+1)=-2 \ (2x+1)=-2$ each be defined also be also below the sum of the contraction of the c

 $x_0=1$ عند اليمين وعلى اليسار عند f قابلة للاشتقاق على اليمين وعلى $f_d'(1) \neq f_g'(1)$ ولكن

 $x_0 = 1$ عند قابلة للاشتقاق عند f

. $x_0=1$ على اليمين عند f على المالة مماس منحنى الدالة (4

 $y = f(x_0) + f'_d(x_0)(x - x_0)$

 (Δ_d) : $y = 2x - 4 \Leftrightarrow y = 0 + 2(x - 2) \Leftrightarrow y = f(1) + f'_d(1)(x - 1)$

 $x_0=0$ على اليسار عند f على الدالة المعادلة لنصف مماس منحنى الدالة على اليسار عند (5

 $y = f(x_0) + f'_g(x_0)(x - x_0)$

 (Δ_g) : $y = -2x + 2 \Leftrightarrow y = 0 - 2(x - 1) \Leftrightarrow y = f(1) + f'_g(1)(x - 1)$

لدينا A(1; f(1)) النقطة مزواة $f'_d(1) \neq f'_g(1)$ تسمى نقطة مزواة

III. الدالة المشتقة لدالة عدية

. الاشتقاق على مجال

f دالة عددية معرفة على مجال مفتوح I نقول إن الدالة f قابلة للاشتقاق في كل نقطة من I والدالة المشتقة f . الدالة المشتقة

f الدالة المشتقة للدالة f الدالة المشتقة للدالة $f':I \to \mathbb{R}$ و المعرفة كما يلي f'(x) هي الدالة التي نرمز لها بالرمز f'(x)

IV. جدول للدوال المشتقة لدوال اعتيادية و العمليات حول الدوال المشتقة

(أنظر الجدول1 و 2)

أمثلة: حدد الدالة المشتقة للدالة f في كل حالة من الحالات التالية:

 $f(x) = x^{10} (3 \ f(x) = 3x - 5 (2 \ f(x) = 2(1$

 $f(x) = 6\sqrt{x} - 4$ (6 $f(x) = \frac{5}{x}$ (5 $f(x) = 4x^3 - \frac{1}{2}x^2 - 1$ (4

 $f(x) = \cos(7x+2)$ (8 $f(x) = 6x^4 - \cos x + 3\sin x$ (7

 $f(x) = 3\tan x - 1 (10 \quad f(x) = \frac{4}{5}\sin(5x + 4) (9$

 $f(x) = \frac{1}{2x+1} (12 \ f(x) = x \cos x (11$

 $f(x) = \sqrt{x^2 + 1}$ (15 $f(x) = (3x + 4)^3 (14$ $f(x) = \frac{3x - 1}{x + 2} (13$

 $f'(x) = (3x-5)' = 3(2 \quad f'(x) = (2)' = 0(1 = 2)$

 $f'(x) = (x^{10})' = 10x^{10-1} = 10x^9$ (3)

 $f'(x) = \left(4x^3 - \frac{1}{2}x^2 - 1\right)' = 4 \times 3x^{3-1} - \frac{1}{2} \times 2x - 0 = 12x^2 - x$ (4)

 $x_0 = 0$ عند قابلة للشتقاق عند f قابلة f عند 3

على اليمين عند f على اليمين عند 4.

حدد معادلة لنصف مماس المنحنى الممثل للدالة f على اليسار عند $x_0=0$

A(0,f(0)) كيف نسمي النقطة 8.6

 $f(0) = 0^3 + |0| = 0$ و $\begin{cases} f(x) = x^3 + x; x \ge 0 \\ f(x) = x^3 - x; x \le 0 \end{cases}$

 $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^3 + x - 0}{x - 0} = \lim_{x \to 0^+} \frac{x(x^2 + 1)}{x} = \lim_{x \to 0^+} x^2 + 1 = 1$

 $1=f_d'\left(0
ight)$ ومنه f قابلة للاشتقاق على اليمين عند $x_0=0$ وهو العدد المشتق على اليمين عند $x_0=0$

 $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^+} \frac{x^3-x-0}{x-0} = \lim_{x\to 0^+} \frac{x\left(x^2-1\right)}{x} = \lim_{x\to 0^+} x^2-1 = -1 \ (2$ each f eight likewise f each f each limit f each f each limit f each limit f each f each limit f each limit

: ولكن يا قابلة للاشتقاق على اليمين وعلى اليسار عند $x_0=0$ ولكن $f'_d(0) \neq f'_e(0)$

 $x_0 = 0$ عند قابلة للاشتقاق عند f

. $x_0=0$ عند الدالة f على الدالة مماس منحنى الدالة (4

 $y = f(x_0) + f'_d(x_0)(x - x_0)$

 (Δ_d) : $y = x \Leftrightarrow y = 0 + 1(x - 0) \Leftrightarrow y = f(0) + f'_d(0)(x - 0)$

. $x_0=0$ عند اليسار عند f على اليسار عند (5

 $y = f(x_0) + f'_g(x_0)(x - x_0)$

 $(\Delta_g): y = -x \Leftrightarrow y = 0 - 1(x - 0) \Leftrightarrow y = f(0) + f'_g(0)(x - 0)$

لدينا Aig(0;fig(0ig)ig) : النقطة مزواة النقطة مزواة المحينا (6

خاصية: لتكن f دالة عددية معرفة

I على مجال مفتوح I و a عنصرا من

قابلة f قابلة للاشتقاق على النقطة a قابلة f

للشنقاق على اليمين في النقطة a و f قابلة للاشتقاق على اليسار في

 $f_g'(a) = f_d'(a)$ و a النقطة a

 $f(x) = |x^2 - 1|$: نعتبر الدالة f المعرفة كالتالي : تعرين2:

 $x_0=1$ عند اليمين عند f على اليمين عند 1.

 $x_0=1$ عند اليسار عند f على اليسار عند 2.

 $^{\circ}x_{0}=1$ عند قابلة للاشتقاق عند f قابلة 3.

. $x_0 = 1$ عنى اليمين عند f على الدالة معادلة لنصف مماس منحنى الدالة . 4

. $x_0=1$ على اليسار عند f على اليسار عند . $x_0=1$

(A(1, f(1))) كيف نسمي النقطة 9.

: ندرس اشارة $f(x) = |x^2 - 1|$ ندرس اشارة

x = -1, $x = 1 \Leftrightarrow (x-1)(x+1) = 0 \Leftrightarrow x^2 - 1 = 0$; $x^2 - 1$

 $f(1) = \left| 1^2 - 1 \right| = 0 \quad \text{o} \quad \begin{cases} f(x) = x^2 - 1; x \in] - \infty; -1 \right] \cup \left[1; + \infty \right[\\ f(x) = -\left(x^2 - 1 \right); x \in \left[-1; 1 \right] \end{cases}$

$$f'(x) = (4\sqrt{x} - 1)' = 4 \times \frac{1}{2\sqrt{x}} - 0 = \frac{2}{\sqrt{x}} = \frac{2\sqrt{x}}{x} \quad (7)$$

$$f'(x) = (\alpha x 2x + 3\sin 3x)' = -2\sin 2x + 3x 3\cos 3x = -2\sin 2x + 9\cos 3x \quad (8)$$

$$f(x) = (3x^2 + 2)(7x + 1) \quad (9)$$

$$(u \times v)' = u' \times v + u \times v' = 1 \text{ i.i.} \text{$$

 $f'(x) = \left(\frac{5}{x}\right)' = \left(5 \times \frac{1}{x}\right)' = 5 \times \left(-\frac{1}{x^2}\right) = \frac{-5}{x^2} (5)$ $f'(x) = (6\sqrt{x} - 4)' = 6 \times \frac{1}{2\sqrt{x}} - 0 = \frac{3}{2\sqrt{x}} = \frac{3\sqrt{x}}{x}$ (6) $f'(x) = (6x^4 - \cos x + 3\sin x)' = 6 \times 4x^3 + \sin x + 3\cos x = 24x^3 + \sin x + 3\cos x$ (7) $f'(x) = \cos(7x+2)' = -7 \times \sin(7x+2)$ (8) $f'(x) = \frac{4}{5}\sin(5x+4)' = 5\frac{4}{5} \times \cos(5x+4) = 4 \times \cos(5x+4)$ (9) $f'(x) = (3\tan x - 1)' = 3 \times (1 + \tan^2 x) - 0 = 3 \times (1 + \tan^2 x)$ (10) $(u \times v)' = u' \times v + u \times v'$: التالية القاعدة القاعدة التالية (11 $f'(x) = (x \times \cos x)' = x' \times \cos x + x \times \cos' x = 1 \times \cos x - x \times \sin x = \cos x - x \sin x$ $\left(\frac{1}{2}\right)' = -\frac{u'}{2}$: نستعمل القاعدة التالية (12 $f'(x) = \left(\frac{1}{2x+1}\right)' = -\frac{(2x+1)'}{(2x+1)^2} = -\frac{2}{(2x+1)^2}$ $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$: نستعمل القاعدة التالية $f(x) = \frac{3x-1}{x+2}$ $f'(x) = \left(\frac{3x-1}{x+2}\right)' = \frac{(3x-1)'(x+2)-(3x-1)(x+2)'}{(x+2)^2} = \frac{3(x+2)-1\times(3x-1)}{(x+2)^2} = \frac{7}{(x+2)^2}$ $f'(x) = ((3x+4)^3)' = 3 \times (3x+4)^{3-1} \times (3x+4)' = 3 \times 3 \times (3x+4)^{3-1} = 9(3x+4)^2$ $\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$: نستعمل القاعدة التالية (15 $f'(x) = (\sqrt{x^2 + 1})' = \frac{(x^2 + 1)'}{2\sqrt{x^2 + 1}} = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$ تمرين \mathfrak{s} : حدد الدالة المشتقة للدالة f في كل حالة من الحالات التالية: $f(x) = 2x^3$ (3 f(x) = 7x + 15 (2 f(x) = 11 (1 $f(x) = \frac{1}{5}x^5 - \frac{1}{4}x^4 - 4x - 6$ (5 $f(x) = 4x^4 - \frac{1}{2}x^3 - x + 1$ (4 $f(x) = \cos 2x + 3\sin 3x \ (8 f(x) = 4\sqrt{x} - 1 \ (7 f(x) = \frac{3}{x})$ $f(x) = \frac{1}{5x+7} (10 f(x) = (3x^2+2)(7x+1) (9$ $f(x) = \frac{1}{\sin x} (13 \ f(x)) = \frac{7x}{x^3 + 1} (12 f(x)) = \sqrt{x^2 + 8x}$ (11) $f(x) = (2x-1)^{7} (15 f(x) = \frac{4x-3}{2x-1} (14$ $f'(x) = (7x+15)' = 7(2 \quad f'(x) = (11)' = 0(1 \frac{1}{2})$ $f'(x) = (2x^3)' = 2 \times 3x^{3-1} = 6x^2$ (3) $f'(x) = \left(4x^4 - \frac{1}{2}x^3 - x + 1\right)' = 4 \times 4x^{4-1} - \frac{1}{3} \times 3x^2 - 1 + 0 = 16x^3 - x^2 - 1(4x^4 - \frac{1}{2}x^3 - x + 1)$ $f'(x) = \left(\frac{1}{5}x^5 - \frac{1}{4}x^4 - 4x - 6\right)' = \frac{1}{5} \times 5x^{5-1} - \frac{1}{4} \times 4x^3 - 4 + 0 = x^4 - x^3 - 4(5)$ $f'(x) = \left(\frac{3}{x}\right)' = \left(3 \times \frac{1}{x}\right)' = 3 \times \left(-\frac{1}{x^2}\right) = \frac{-3}{x^2}$ (6)

 $\forall x \in I \ f'(x) \geq 0$ تزایدیهٔ علی مجال I یعنی f .

- $orall x \in I$ $f'(x) \le 0$ تناقصية على مجال f مجال .
- $orall x \in I$ f'(x) = 0 يعني مجال f مجال f .
- $f(x) = x^2 + 2x 2$: مثال: فعتبر الدالة f المعرفة كالتالي
 - $D_{\scriptscriptstyle f}$ عند محدات (2 محدات طایات f عند محدات (1
 - f ادرس تغیرات 4) حدد جدول تغیرات f
 - $D_f = \mathbb{R}$ الدالة fحدودية اذن (1:1)
 - $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 + 2x 2 = \lim_{x \to -\infty} x^2 = +\infty (2$
 - $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 + 2x 2 = \lim_{x \to +\infty} x^2 = +\infty$
 - $\forall x \in \mathbb{R} : f'(x) = (x^2 + 2x 2)' = 2x + 2(3)$
 - x = -1 يعني 2x + 2 = 0 يعني f'(x) = 0
 - f'(x): ندرس اشارة

x	$-\infty$	-1	$+\infty$
2x+2	_	þ	+

اذا كانت: f ومنه $f'(x) \ge 0$ فان $x \in [-1; +\infty]$ ومنه f تزايديه اذا كانت: $f = x \in]-\infty; -1$ ومنه $f = x \in]-\infty; -1$ ومنه $f = x \in]-\infty; -1$ ومنه $f = x \in]-\infty; -1$ التأثير التأثير

I	x	$-\infty$	-1	$+\infty$
	f'(x)		þ	+
	f(x)	**************************************		→ +∞

مطاريف دالة قابلة للاشتقاق

I خاصية 1: التكن f دالة قابلة للاشتقاق على مجال مفتوح f عنصر f عنصر ا من f

إذا كانت f دالة قابلة للاشتقاق في النقطة a وتقبل مطرا فا

f'(a) = 0 في النقطة a فان

a و I دالة قابلة للاشتقاق على مجال مفتوح f دالة قابلة للاشتقاق على مجال مفتوح

I عنصرا من

إذا كانت f(a) تنعدم في النقطة a تتغير إشارتها فان f(a) مطرا فا للدالة f

 $f(x) = x^2 - 6x + 1$: مثال: حدد مطاریف الدالهٔ f(x) المعرفة كالتالي

 $f'(x) = (x^2 - 6x + 1)' = 2x - 6$ و $D_f = \mathbb{R}$: الجواب

x = 3 يعني 2x - 6 = 0 يعني f'(x) = 0

ندرسُ اشارة : f'(x) ونحدد جدول التغيرات

x	$-\infty$	3	$+\infty$
f'(x)	_	þ	+
f(x)	+8/		+∞

f تنعدم في g و تتغير إشارتها اذنg مطرا ف للدالة f وبالضبط قيمة دنيا للدالة f

 $f(x) = 2x^2 + x + 1$: كالتالي $f(x) = 2x^2 + x + 1$ المعرفة كالتالي $f(x) = -x^2 + x + 1$ أو $f(x) = -x^2 + 2x + 3$

 D_f عند محدات f الحسب نهایات f عند محدات (2

- f المسب مشتقة الدالة f و أدرس اشارتها 4) حدد جدول تغيرات f عدد معادلة لمماس منحى الدالة f في النقطة الذي أفصولها f عموري المعلم (f) حدد نقط تقاطع f ان وجدت f معام متعامد ممنظم (f) في معلم متعامد ممنظم f الدالة f ان وجدت f الدالة f ان وجدت f الدالة f حدودية اذن f الدالة f الدالة f حدودية اذن f الدالة f الدالة f الدالة f المناف المناف
 - $\begin{array}{c|cccc} x & -\infty & -\frac{1}{4} & +\infty \\ \hline 4x+1 & & 0 & + \\ \end{array}$
 - 4) جدول التغير ات:

	x	$-\infty$	$-\frac{1}{4}$	$+\infty$
I	f'(x)		þ	+
ſ	f(x)	***	<u>√7</u>	+∞

- $y = f(x_0) + f'(x_0)(x x_0)$ (5)
- $y = 5x 21 \Leftrightarrow y = 4 + 5(x 5) \Leftrightarrow y = f(1) + f'(1)(x 1)$
 - f'(1) = 5 و f(1) = 4: لأن
- اً) أ)نقطُ تقاطع ($oldsymbol{C}_{f}$) المنحنى الممثل للدالة f مع محور الأفاصيل (f
 - $2x^2 + x + 1 = 0$ يعني f(x) = 0: نحل فقط المعادلة
 - نحل المعادلة باستعمال المميز
 - c = 1 g b = 1 g a = 2
 - $\Delta = b^2 4ac = (1)^2 4 \times 1 \times 2 = -7 < 0$
 - ومنه هذه المعادلة ليس لها حل: وبالنلي التمثيل المبياني لا يقطع محور الأفاصيل
 - ب)نقط تقاطع $\binom{C_f}{f}$ المنحنى الممثل للدالة f مع محور الأراتيب
 - f(0): نحسب فقط
 - A(0;1) : ومنه نقطة التقاطع هي f(0)=1
 - $\frac{7}{8}$: الدالة تقبل قيمة دنيا هي (7
 - C_f :رسم(8)

2-	-1	-1/4	0	1	2
7	2	7/8	1	4	11

 $-1 = f_d^{\prime}\left(0
ight)$ ومنه $x_0 = 0$ عند على اليمين على ومنه g $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-x(x - 1) - 0}{x - 0} = \lim_{x \to 0^{-}} -x + 1 = 1$ $-1=g_{\alpha}'(0)$ ومنه g قابلة للاشتقاق على اليسار عند ومنه $x_0=0$ $x_0 = 0$ قابلة للاشتقاق على اليمين وعلى اليسار عند q $g'_{d}(0) \neq g'_{e}(0)$: ولكن $x_0 = 0$ عنير قابلة للاشتقاق عند g3. حل معادلة تفاضلية تعريف:ايكن @ عددا حقيقيا غير منعدم. y'' حيث y ذات المجهول الدالة $y'' + \omega^2 y = 0$ مشتقتها الثانية تسمى معادلة تفاضلية. \mathbb{R} کل داله f قابلهٔ للاشتقاق مرتین علی . \mathbb{R} من $f''(x) + \omega^2 f(x) = 0$ کل من $y'' + \omega^2 y = 0$ تسمى حلا للمعادلة التفاضلية خاصية: ليكن ه عددا حقيقيا غير منعدم. الحل العام للمعادلة التفاضلية $y'' + \omega^2 y = 0$ هو مجموعة $y:x \rightarrow a\cos \omega x + \beta \sin \omega x$ المعرفة كما يلي : $y:x \rightarrow a\cos \omega x + \beta \sin \omega x$ $eta\in\mathbb{R}$ و $lpha\in\mathbb{R}$ $y'' + \omega^2 y = 0$: ملحوظة عدل المعادلة التفاضلية يعني تحديد الحل العام للمعادلة. y''+16y=0 المعادلة التفاضلية التالية: $: y'' + 4^2 y = 0 \Leftrightarrow y'' + 16y = 0$ الجواب y'' + 16y = 0ومنه الحل العام للمعادلة التفاضلية $y:x \rightarrow \infty + \beta \sin 4x$ المعرفة كما يلي : y المعرفة كما يلي $eta\in\mathbb{R}$ و $lpha\in\mathbb{R}$ حيث y'' + 4y = 0 (1 :مرين6: حل المعادلات التفاضلية التالية: 1 9y'' + 16y = 0 (4 y'' + y = 0 (3 y'' + 8y = 0 (2) $: y'' + 2^2 y = 0 \Leftrightarrow y'' + 4y = 0$ الجواب y'' + 4y = 0ومنه الحل العام للمعادلة التفاضلية $y:x \rightarrow \alpha \cos 2x + \beta \sin 2x$ المعرفة كما يلي: $y:x \rightarrow \alpha \cos 2x + \beta \sin 2x$ $eta\in\mathbb{R}$ و $lpha\in\mathbb{R}$ حيث $y'' + (2\sqrt{2})^2 y = 0 \Leftrightarrow y'' + 8y = 0$ (2) y'' + 8y = 0ومنه الحل العام للمعادلة التفاضلية $y:x \rightarrow \alpha \cos 2\sqrt{2}x + \beta \sin 2\sqrt{2}x$: هو مجموعة الدوال y المعرفة كما يلى $eta\in\mathbb{R}$ و $lpha\in\mathbb{R}$ $y'' + y = 0 \Leftrightarrow y'' + 1^2 y = 0$ (3) y'' + y = 0ومنه الحل العام للمعادلة التفاضلية $y:x \to \alpha \cos 1x + \beta \sin 1x$: المعرفة كما يلي المعرفة كما المعرفة كم $eta\in\mathbb{R}$ و $lpha\in\mathbb{R}$ حيث $y'' + \left(\frac{4}{3}\right)^2 y = 0 \Leftrightarrow y'' + \frac{16}{9}y = 0 \Leftrightarrow 9y'' + 16y = 0$ (4 y'' + 8y = 0ومنه الحل العام للمعادلة التفاضلية $y:x \to \alpha \cos \frac{4}{3}x + \beta \sin \frac{4}{3}x$: هو مجموعة الدوال y المعرفة كما يلي

 $eta\in\mathbb{R}$ و $lpha\in\mathbb{R}$

الأستاذ: عثماني نجيب

ملاحظة : بالنسبة ل $f(x) = -x^2 + 2x + 3$ وتحديد نقط التقاطع $-x^{2}+2x+3=0$ مع محور الأفاصيل نحل المعادلة : $f\left(x\right)=0$ نحل المعادلة باستعمال المميز c = 3 b = 2 a = -1 $\Delta = b^2 - 4ac = (2)^2 - 4 \times 3 \times (-1) = 16 = (4)^2 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ **9** $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ $x_2 = \frac{-2 - \sqrt{16}}{-2} = 3$ **9** $x_1 = \frac{-(2) + \sqrt{16}}{-2} = -1$ B(3;0) ومنه نقط التقاطع هما: A(-1;0) أو تمرین5: نعتبر الدالتین f و g المعرفتین کالتالی: g(x) = |x|(x-1) 9 $\begin{cases} f(x) = x^2 + 2x; x \le 1 \\ f(x) = -\frac{2}{x} + 5; x > 1 \end{cases}$ $x_0=1$ عند اليمين وعلى اليسار عند f الدرس قابلية الشنقاق الدالة الدالة المين وعلى المين الدالة الدالة الدالة المين الدالة ا يه الدالة f قابلة للاشتقاق f $x_0 = 0$ عند g الدالة g عند (3 $f(1) = 1^2 + 2 \times 1 = 3$ و $\begin{cases} f(x) = x^2 + 2x; x \le 1 \\ f(x) = -\frac{2}{x} + 5; x > 1 \end{cases}$ $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{-\frac{4}{x} + 5 - 3}{x - 1} = \lim_{x \to 1^+} \frac{-\frac{4}{x} + 2}{x - 1} = \lim_{x \to 1^+} \frac{-\frac{4 + 2x}{x}}{x - 1}$ (1) $= \lim_{x \to 1^+} \frac{-4 + 2x}{x} \times \frac{1}{x - 1} = \lim_{x \to 1^+} \frac{-4 + 2x}{x} \times \frac{1}{x - 1} = -\infty$ $x_0 = 1$ غير قابلة للاشتقاق على اليمين عند f $\lim_{x \to \Gamma} \frac{f(x) - f(0)}{x - 1} = \lim_{x \to \Gamma} \frac{x^2 + 2x - 3}{x - 1}$ $\frac{0}{0}$: نحصل عن شکل غ محدد من قبیل نتخلص من ال شغم مثلا بالتعميل ثم بالاختزال: $x^2 + 2x - 3$ نلاحظ أن : 1 جنر للحدودية x-1: هي تقبل القسمة على $x^2+2x-3=(x+3)(x-1)$: وباستعمال تقنية القسمة الاقليدية نجد أن $\lim_{x \to \Gamma} \frac{f(x) - f(0)}{x - 1} = \lim_{x \to \Gamma} \frac{(x + 3)(x - 1)}{x - 1} = \lim_{x \to \Gamma} x + 3 = 4$ $4=f_{g}^{\prime}(1)$ ومنه f قابلة للاشتقاق على اليسار عند f عند ومنه ومنه ومنه غير قابلة للاشتقاق على اليمين f (2 $x_0 = 1$ غير قابلة للاشتقاق عند f $\begin{cases} s(x) - x(x-1), x \ge 0 \\ g(x) = -x(x-1); x \le 0 \end{cases} g(0) = 0 \quad g(x) = |x|(x-1)_{(3)}$ $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x(x - 1) - 0}{x - 0} = \lim_{x \to 0^+} x - 1 = -1$ http:// xyzmath.e-monsite.com

جدو ل للدوال المشتقة لدوال اعتيادية و العمليات حول الدوال

الدالة المشتقة f^\prime	الدالة
$f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$	$f(x) = \tan x$
f'(x) = u' + v'	f(x) = u + v
f'(x) = u' - v'	f(x) = u - v
f'(x) = k.u'	f(x) = k.u
$f'(x) = u' \times v + u \times v'$	$f(x) = u \times v$
$f'(x) = nu^n \times u'$	$f(x) = u^n$
$f'(x) = -\frac{u'}{u^2}$	$f\left(x\right) = \frac{1}{u}$
$f'(x) = \frac{u' \times v - u \times v'}{v^2}$	$f\left(x\right) = \frac{u}{v}$
$f'(x) = \frac{u'}{2\sqrt{u}}$	$f\left(x\right) = \sqrt{u}$

الدالة المشتقة f^\prime	ندانة
f'(x) = 0	f(x) = k
f'(x)=1	f(x) = x
f'(x) = a	f(x) = ax
f'(x) = a	f(x) = ax + b
$f'(x) = nx^{n-1} \qquad n \in \mathbb{Z}^*$	$f(x) = x^n$
$f'(x) = -\frac{1}{x^2}$	$f\left(x\right) = \frac{1}{x}$
$f'(x) = \frac{1}{2\sqrt{x}}$	$f\left(x\right) = \sqrt{x}$
$f'(x) = -\sin x$	$f(x) = \cos x$
$f'(x) = \cos x$	$f(x) = \sin x$
$f'(x) = -a\sin(ax+b)$	$f(x) = \cos(ax + b)$
$f'(x) = a\cos(ax+b)$	$f(x) = \sin(ax + b)$
$f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$	$f(x) = \tan x$

ص 60 http:// xyzmath.e-monsite.com

أكاديمية الجهة الشرقية نيابة وجدة

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مدكرة رقم /10

مذكرة رقم 10 في درس متجمات الفضاء

الأهداف و القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
_ يقدم مفهوم المتجهة والحساب المتجهي	- التمكن من قواعد الحساب المتجهي في الفضاء؛	
بنفس الكيفية التي قدم بها في المستوى.	- التعرف والتعبير عن استقامية متجهتين؛	
_يتم الاكتفاء بالتأويل الهندسي للاستقامية		
و الاستوانية.	_ تطبيق الاستقامية والاستوانية في حل مسائل	- المتجهات المستوانية.
	هندسية.	

I تساوی متجهتین

A و B نقطتان من الفضاء , إذا رمزنا للمتجهة \overline{AB} بالرمز \overline{u} فان :

- اتجاه \vec{u} هو المستقيم (AB).
- B نحو A نحو هو المنحى من
- $\|\vec{u}\| = AB$: و نكتب AB هي المسافة منظم منظم

ملحوظة: لكل نقطة A من الفضاء , المتجهة \overline{AA} ليس لها اتجاه و منظمها منعدم ؛

 $\overrightarrow{AA} = \overrightarrow{0}$ تسمى المتجهة المنعدمة , ونكتب \overrightarrow{AA}

لكل متجهة \vec{u} من الفضاء, لكل نقطة A من الفضاء, توجد نقطة

 $\vec{u} = \overrightarrow{AM}$: وحيدة M من الفضاء بحيث

تعريف: نقول أن متجهتين متساويتان , ادا كان لهما نفس الاتجاه ونفس المنحى ونفس المنظم.

خاصية: ليكن ABCD رباعيا من الفضاء لدينا:

متوازي الأضلاع ادا وفقط ادا كان $\overline{AB} = \overline{DC}$.

مثان: انتكن A و B و D أربع نقط غير مستقيمية A

بين أنه ادا كان : $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$ لكل M من الفضاء

فان: ABCD متوازي الأضلاع.

الجواب بيكفي أن نبين مثلا أن : $\overrightarrow{AB} = \overrightarrow{DC}$???? لدينا ·

 $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{MC} + \overrightarrow{CD}$ يعني $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$

AB = DCيعني O = AB + CDيعني

II. مجموع متجهتين

تعریف؛ لتکن \vec{u} و \vec{v} متجهتین من الفضاء

مجموع المتجهتين \vec{u} و \vec{v} هي المتجهة \vec{w} بحيث : ادا وضعنا $\vec{w} = \vec{u} + \vec{v}$: $\vec{w} = \overrightarrow{AC}$ فان : $\vec{w} = \overrightarrow{AC}$ و نكتب : $\vec{u} = \overrightarrow{AB}$ علاقة شال: لكل \vec{v} و \vec{u} و \vec{u} و نقط من الفضاء

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$: لدينا

مقابل متجهة: لتكن \vec{u} متجهة من الفضاء.

مقابل المتجهة \vec{u} هي المتجهة التي نرمز لها بالرمز \vec{u} و التي لها نفس اتجاه \vec{u} و ونفس منظم \vec{u} و ولكن منحاها هو

. عکس منحی \overrightarrow{u} و لدینا \overrightarrow{BA} = - \overrightarrow{AB} لکل A و \overrightarrow{u} منحی

A و B و C و D أربع نقط من الفضاء

مثال:نضع : مثال:نضع مثال:نضع مثال:نضع مثال:نضع مثال:نضع مثال:نصع الفضاء

M غير مرتبطة بالنقطة \dot{u} غير نبطة بالنقطة

 $\vec{u} = 3\overrightarrow{MA} - 2\overrightarrow{MA} - 2\overrightarrow{AC} + 4\overrightarrow{MA} + 4\overrightarrow{AB} - 5\overrightarrow{MA} - 5\overrightarrow{AD}$: يعنى

ومنه المتجهة \vec{u} غير مرتبطة بالنقطة $\vec{u}=-2\overrightarrow{AC}+4\overrightarrow{AB}-5\overrightarrow{AD}$

استقامیة متجهتین و التعریف المتجهی لمستقیم ومستویاستقامیة متجهتین :

تعریف :انتکن \vec{u} و \vec{v} متجهتین غیر منعدمتین من الفضاء نقول ان \vec{v} و مستقیمیتان اذا وجد عدد حقیقی \vec{v}

 $\vec{v} = k\vec{u}$: بحبث

C و D و D و D و كنقط من الفضاء بحيث C
eq D و $A \neq B$

 $(AB) || (CD) \Leftrightarrow \exists k \in \mathbb{R}; \overrightarrow{CD} = \overrightarrow{AB}$

تمرين: ليكن ABCD رباعي الأوجه

نعتبر النقط M و N و Q أربع نقط بحيث :

 $\overrightarrow{CQ} = \overrightarrow{3CB}$ $\overrightarrow{AN} = 2\overrightarrow{AD}$ $\overrightarrow{AM} = 2\overrightarrow{AB}$

 $\overrightarrow{CP} = 3\overrightarrow{CD}$

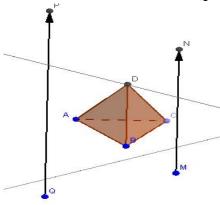
1. أنشئ الشكل.

 \overrightarrow{BD} بدلالة \overrightarrow{PO} و \overrightarrow{MN} بدلالة 2.

. استنتج أن المتجهتين \overrightarrow{MN} و \overrightarrow{PQ} مستقيميتان.

4. ماذا تستنتج بالنسبة للمستقيمين (MN) و (PQ)

أجوية :الشكل



 $\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = -\overrightarrow{AM} + \overrightarrow{AN} = -2\overrightarrow{AB} + 2\overrightarrow{AD} (2)$ $\overrightarrow{MN} = 2\overrightarrow{BA} + 2\overrightarrow{AD} = 2(\overrightarrow{BA} + \overrightarrow{AD}) = 2\overrightarrow{BD}$

 $\overrightarrow{PQ} = \overrightarrow{PC} + \overrightarrow{CQ} = -\overrightarrow{CP} + \overrightarrow{CQ} = -3\overrightarrow{CD} + 3\overrightarrow{CB} = -3(\overrightarrow{CD} - \overrightarrow{CB})$

 $\overrightarrow{PQ} = -3(\overrightarrow{CD} + \overrightarrow{BC}) = -3(\overrightarrow{BC} + \overrightarrow{CD}) = -3\overrightarrow{BD}$ $\mathbf{0} \overrightarrow{BD} = \frac{1}{2} \overrightarrow{MN}$ وجدنا $\overrightarrow{MN} = 2 \overrightarrow{BD}$ يعني (3 \mathbf{Q} $\overrightarrow{BD} = -\frac{1}{2}\overrightarrow{PQ}$ يعني $\overrightarrow{PQ} = -3\overrightarrow{BD}$ $\overrightarrow{MN} = -\frac{2}{3}\overrightarrow{PQ}$ من **0** و **9** نستنتج أن \overrightarrow{Q} أن \overrightarrow{Q} أي \overrightarrow{Q} ومنه المتجهتين \overrightarrow{MN} و \overrightarrow{PQ} مستقيميتان . وجدنا (PQ) و (MN) اذن المستقيمان $\overline{MN} = -\frac{2}{2}\overline{PQ}$ وجدنا (4 2. التعريف المتجهي لمستقيم في الفضاء: لتكن نقطة A من الفضاء و \vec{u} متجهة غير منعدمة المستقيم (D) الذي يمر من A و \vec{u} متجهة موجهة له نرمز له بالرمز $D(A; \vec{u})$ ولدينا : $M \in D \Leftrightarrow \exists k \in \mathbb{R}; \overrightarrow{AM} = k\overrightarrow{u}$ $M \in (AB) \Leftrightarrow \exists k \in \mathbb{R}; \overline{AM} = k\overline{AB}$ 3. التعريف المتجهى لمستوى في الفضاء: و B و X ثلاث نقط من الفصاء غير مستقيمية Aو \overrightarrow{AC} و \overrightarrow{AC} متجهتین غیر مستقیمیتین و \overrightarrow{AC} و \overrightarrow{AB} (P) = ABC لنا مستوى \overrightarrow{AC} و \overrightarrow{AB} و \overrightarrow{AB} مستوى يمر من النقطة \overrightarrow{AB} و النقطة \overrightarrow{ABC} متجهتين موجهتين له $P(A; \vec{u}; \vec{v}) = ABC$: ونكتب $M \in P(A; \vec{u}; \vec{v}) \iff \overrightarrow{AM} \quad \overrightarrow{v} \quad \vec{v} \quad \vec{u}$ $M \in P\left(\vec{A;u;v}\right) \Leftrightarrow \exists k \in \mathbb{R}; \overrightarrow{AM} = k\overrightarrow{u}$ $M \in P\left(\vec{A}, \vec{u}, \vec{v}\right) \Longleftrightarrow \exists x \in \mathbb{R}; \exists y \in \mathbb{R} \overrightarrow{AM} = \vec{xu} + \vec{yv}$ $M \in ABC \Leftrightarrow \overrightarrow{AM} \circ \overrightarrow{AC} \circ \overrightarrow{AB}$ ليكن ABCD رباعي الأوجه و M نقطة من الفضاء بحيث : $\overrightarrow{AM} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB} + \overrightarrow{DC}$ \overrightarrow{AC} و \overrightarrow{AB} بدلالة متجهة \overrightarrow{AM} ا.1 (ABC) استنتج أن النقطة M تنتمي إلى المستوى 2 \overrightarrow{EC} استنتج أن المتجهات \overrightarrow{IJ} و \overrightarrow{AB} و \overrightarrow{EC} مستوائية . أجوبة : آ) $\overrightarrow{AM} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{BD} + \frac{1}{2}\overrightarrow{AB} + \overrightarrow{DA} + \overrightarrow{AC}$ $\overrightarrow{AM} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} + \overrightarrow{BA} + \overrightarrow{AC} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AB} + \overrightarrow{AC} = \frac{1}{2} \times \overrightarrow{AB} + 1 \times \overrightarrow{AC}$ وجدنا $M = \frac{1}{2} \times \overline{AB} + 1 \times \overline{AC}$ وجدنا $M = \frac{1}{2} \times \overline{AB} + 1 \times \overline{AC}$ وجدنا المستوى (ABC) \overrightarrow{AB} و \overrightarrow{AM} و منه المتجهات $\overrightarrow{AM} = \frac{1}{2} \times \overrightarrow{AB} + 1 \times \overrightarrow{AC}$ وجدنا و \overrightarrow{AC} مستوائية

أكاديمية الجهة الشرقية نيابة وجدة

مادة الرباضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مذكرة رقم/12

مذكرة رقم 12 في درس تحليلية الغضاء

الأهداف و القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج	
- يتم تحديد المعلم والأساس انطلاقا من أربع	_ ترجمة مفاهيم وخاصيات الهندسة التآلفية	- إحداثيات نقطة بالنسبة لمعلم؛ إحداثيات متجهة	
نقط غير مستوائية؛	والهندسة المتجهية بواسطة الإحداثيات؟	بالنسبة لأساس؛ إحداثيات $\vec{u} + \vec{v}$ و \vec{u} ؛	
- يتم استعمال الإسقاط عل مستوى بتواز مع	- البرهنة على استقامية متجهتين؛	إحداثيات AB ؛	
مستقيم لتقديم إحداثيات نقطة (دون الإفراط	- البرهنة على استوانية ثلاث متجهات؛	 محددة ثلاث متجهات؛ 	
في تناول الإسقاط)؛		_ تمثيل باراميتري لمستقيم؛ الأوضاع النسبية	
	_ اختيار التمثيل المناسب (ديكارتي أو	لمستقيمين؛	
10 10 10 10 10 No 10 10	باراميتري) لدراسة الأوضاع النسبية للمستقيمات	- تمثيل بار اميتري لمستوى؛	
- يتم التركيز على الأداة التحليلية في دراسة	والمستويات وفي تأويل النتائج.		
الأوضاع النسبية للمستقيمات والمستويات في	1000 1000 1000	لمستويين	
الفضاء.		- معادلتان ديكار تيتان لمستقيم؟	
		ـ الأوضاع النسبية لمستقيم ومستوى.	

I.إحداثيات نقطة بالنسبة لمعلم ، إحداثيات متجهة بالنسبة لأساس

الأساس و المعلم في الفضاء

اذا كان \vec{i} و \vec{k} ثلاثة متجهات غير مستوائية و \vec{i} نقطة من الفضياء

أساس للفضاء ، و أن المربوع $(\vec{i}; \vec{j}; \vec{k})$ نقول إن المثلوث معلم في الفضاء. $(O; \vec{i}; \vec{j}; \vec{k})$

ملحوظة: أربع نقط O و A و B و A غير مستوائية تحدد لنا $\left(\overrightarrow{OA};\overrightarrow{OB};\overrightarrow{OC}\right)$: أساسا مثلا

 $\cdot (O; \overrightarrow{OA}; \overrightarrow{OB}; \overrightarrow{OC})$: معلما في الفضاء مثلا

خاصية اليكن $(O; \vec{i}; \vec{j}; \vec{k})$ معلما في الفضاء

لكل نقطة M من الفضاء توجد ثلاث أعداد حقيقية x و y و y بحيث: $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$

و لكل متجهة \vec{u} من الفضاء يوجد مثلوث $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$: (x; y; z)

يسمى مثلوث إحداثيات النقطة M بالنسبة للمعلم (x; y; z)M(x; y; z) و نکتب $O(\vec{i}, \vec{j}, \vec{k})$

 $(o;\vec{i};\vec{j};\vec{k})$ يسمى أفصول النقطة M بالنسبة للمعلم $(x;\vec{i};\vec{j};\vec{k})$.

 $(o;\vec{i},\vec{j};\vec{k})$ يسمى أرتوب النقطة M بالنسبة للمعلم يسمى أرتوب النقطة ي

 $(o; \vec{i}; \vec{j}; \vec{k})$ بالنسبة للمعلم النقطة M بالنسبة للمعلم z

I النقطة يسمى مثلوث إحداثيات المتجهة u بالنسبة للأساس (x;y;z) ومثلوث إحداثيات النقطة (x;y;z) و $\vec{u}(x; y; z)$ فكتب $(\vec{i}; \vec{j}; \vec{k})$

> A النقط $(o;\vec{i};\vec{j};\vec{k})$ معلم معلم الفضاء المنسوب المين المنسوب المين المين المنسوب المين المي B و D و D بحيث:

> > $\overrightarrow{OB} = 2\overrightarrow{i} + 5\overrightarrow{j} + 3\overrightarrow{k}$ $\overrightarrow{OA} = \overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}$ $\overrightarrow{AD} = 3\overrightarrow{i} + 2\overrightarrow{j} + 5\overrightarrow{k}$ $\overrightarrow{OC} = \overrightarrow{i} - 4\overrightarrow{j} + 2\overrightarrow{k}$

 $(\sigma, \vec{i}, \vec{j}; \vec{k})$ حدد إحداثيات A و B و C و B عدد إحداثيات A

حدد إحداثيات المتجهات \overrightarrow{AB} و \overrightarrow{AC} و \overrightarrow{AB} و كانساس (2 $.(\vec{i};\vec{j};\vec{k})$

A(1;2;-3) يعني $\overrightarrow{OA} = \vec{i} + 2\vec{j} - 3\vec{k}$ (1: أجوبة

B(2;5;3) يعني $\overrightarrow{OB} = 2\overrightarrow{i} + 5\overrightarrow{j} + 3\overrightarrow{k}$ C(1;-4;2) يعني $\overrightarrow{OC} = \overrightarrow{i} - 4\overrightarrow{j} + 2\overrightarrow{k}$

 $\overrightarrow{OD} = \overrightarrow{AD} - \overrightarrow{AO} = \overrightarrow{AD} + \overrightarrow{OA}$ يعني $\overrightarrow{AD} = \overrightarrow{AO} + \overrightarrow{OD}$ $\overrightarrow{OD} = \overrightarrow{AD} - \overrightarrow{AO} = 3\overrightarrow{i} + 2\overrightarrow{j} + 5\overrightarrow{k} + \overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k} = 4\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$ يعني D(4;4;2) يعني

 $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = -(\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}) + 2\overrightarrow{i} + 5\overrightarrow{j} + 3\overrightarrow{k}$ (2)

 $\overrightarrow{AB}(1;3;6)$ ومنه $\overrightarrow{AB} = -\vec{i} - 2\vec{j} + 3\vec{k} + 2\vec{i} + 5\vec{j} + 3\vec{k} = \vec{i} + 3\vec{j} + 6\vec{k}$

 $\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} = -\overrightarrow{OA} + \overrightarrow{OC} = -(\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}) + \overrightarrow{i} - 4\overrightarrow{j} + 2\overrightarrow{k}$

 $\overrightarrow{AC}(0;-6;5)$ ومنه $\overrightarrow{AC} = -\vec{i} - 2\vec{j} + 3\vec{k} + \vec{i} - 4\vec{j} + 2\vec{k} = 0\vec{i} - 6\vec{j} + 5\vec{k}$

 $\vec{u} = \vec{i} + 3\vec{j} + 6\vec{k} - 2(0\vec{i} - 6\vec{j} + 5\vec{k})$ يعني $\vec{u} = \overrightarrow{AB} - 2\overrightarrow{AC}$

 $\vec{u}(1;15;-4)$ ومنه $\vec{u}=\vec{i}+3\vec{j}+6\vec{k}-2(0\vec{i}-6\vec{j}+5\vec{k})=\vec{i}+15\vec{j}-4\vec{k}$ يعني

المسافة بين نقطتين علاما المسافة بين نقطتين

نقطتين $B(x_B;y_B;z_B)$ و $A(x_A;y_A;z_A)$ نقطتين

[AB] من الفضاء المنسوب إلى المعلم $(O,ec{i},ec{j},ec{k})$ و I منتصف القطعة

 $\overrightarrow{AB}(x_B-x_A,y_B-y_A,z_B-z_A)$ هو \overrightarrow{AB} هو المتجهة المتجهة مثلوث المتجهة (1

 $I\left(\frac{x_B + x_A}{2}; \frac{y_B + y_A}{2}; \frac{z_B + z_A}{2}\right) \quad \text{as}$

 $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$: idamli (3

B(5;3;-1) و B(5;3;-1) حدد مثلوث إحداثيات المتجهة

 \overline{AB} و مثلوث إحداثيات I منتصف القطعة \overline{AB} و مثلوث إحداثيات \overline{AB} $\overrightarrow{AB}(8;1;-2)$ يعني $\overrightarrow{AB}(5+3;3-2;-1-1)$ x(y'z''-z'y'')-y(x'z''-z'x'')+z(x'y''-y'x'') العدد الحقیقي: \vec{u} و \vec{v} و \vec{v} و نرمز له یسمی محددة المتجهات \vec{u} و \vec{v} و \vec{v} و نرمز له باحد الرمزین : $\begin{vmatrix} x & x' & x' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix}$ أو $\begin{pmatrix} \vec{u}, \vec{v}, \vec{w} \\ y & y' & y'' \\ z & z' & z'' \end{pmatrix}$

ومنه لدبنا:

$$\begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x \begin{vmatrix} y' & y'' \\ z' & z'' \end{vmatrix} - y \begin{vmatrix} x' & x'' \\ z' & z'' \end{vmatrix} + z \begin{vmatrix} x' & x'' \\ y' & y'' \end{vmatrix}$$

مثال مثال $(\vec{i}; \vec{j}; \vec{k})$ المتجهات المنسوب إلى الأساس $\vec{v}(-2;0;4)$ و $\vec{v}(0;-4;4)$ و $\vec{v}(-1;1;1)$

 \overrightarrow{w} و \overrightarrow{v} و \overrightarrow{u} المتجهات : أحسب محددة

$$\det(\vec{u}; \vec{v}; \vec{w}) = \begin{vmatrix} -1 & 0 & -2 \\ 1 & -4 & 0 \\ 1 & 4 & 4 \end{vmatrix} = -1 \begin{vmatrix} -4 & 0 \\ 4 & 4 \end{vmatrix} - 1 \begin{vmatrix} 0 & -2 \\ 4 & 4 \end{vmatrix} + 1 \begin{vmatrix} 0 & -2 \\ -4 & 0 \end{vmatrix}$$

$$\det(\vec{u}; \vec{v}; \vec{w}) = \begin{vmatrix} -1 & 0 & -2 \\ 1 & -4 & 0 \\ 1 & 4 & 4 \end{vmatrix} = -1 \times -16 - 1 \times 8 + 1 \times (-8) = 16 - 16 = 0$$

خاصیة:التکن \vec{u} و \vec{v} و شاث ثلاث متجهات من الفضاء.

 $\det(\overrightarrow{u,v,w})=0$ و قط إذا كانت \overrightarrow{w} متجهات مستوائية إذا وفقط إذا كانت

ملاحظة : في المثال السابق المتجهات \vec{u} و \vec{v} مستوائية نتيجة :المتجهات \vec{v} و \vec{v} غير مستوائية إذا وفقط إذا كانت \vec{v} و \vec{v} غير مستوائية إذا وفقط إذا كانت $\det\left(\vec{u};\vec{v};\vec{w}\right) \neq 0$

 $\vec{x}(0;3;\vec{x})$ المتجهات تمرین $\vec{x}(0;3;\vec{x})$ و $\vec{w}(0;1;2)$ و $\vec{v}(-2;1;1)$ و $\vec{v}(1;1;1)$ و $\vec{v}(1;1;1)$ و $\vec{v}(1;m;2)$ و $\vec{v}(1;m;2)$

 \vec{v} و \vec{v} مستوائية

$$\det(\vec{u}; \vec{v}; \vec{x}) = \begin{vmatrix} 1 & -2 & 0 \\ 1 & 1 & 3 \\ 1 & 1 & 3 \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix} - 1 \begin{vmatrix} -2 & 0 \\ 1 & 3 \end{vmatrix} + 1 \begin{vmatrix} -2 & 0 \\ 1 & 3 \end{vmatrix} (1 \frac{1}{3} \frac{1}{3}$$

 $\det(\vec{u}; \vec{v}; \vec{x}) = 3 - 3 + 6 - 6 = 0$

ومنه: المتجهات \vec{u} و \vec{v} و مستوائية

$$\det(\vec{u}; \vec{v}; \vec{w}) = \begin{vmatrix} 1 & -2 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} - 1 \begin{vmatrix} -2 & 0 \\ 1 & 2 \end{vmatrix} + 1 \begin{vmatrix} -2 & 0 \\ 1 & 1 \end{vmatrix} (2)$$

 $\det(\vec{u}; \vec{v}; \vec{w}) = 1 + 4 - 2 = 3 \neq 0$

ومنه: المتجهات \vec{u} و \vec{v} و \vec{v} غير مستوائية \vec{v} و \vec{v} غير مستوائية \vec{v} و \vec{v} و \vec{v} و \vec{v} و \vec{v} (3

 $I\left(1;\frac{5}{2};0\right) \, \stackrel{\text{يعني}}{\stackrel{\text{log}}{=}} \, I\left(\frac{5+(-3)}{2};\frac{3+2}{2};\frac{-1+1}{2}\right)$ $AB = \left\| \overline{AB} \right\| = \sqrt{\left(5+3\right)^2 + \left(3-2\right)^2 + \left(-1-1\right)^2} = \sqrt{64+1+4} = \sqrt{69}$ $\left(O;\vec{i};\vec{j};\vec{k}\right) \, \text{ما يلي الفضاء منسوب إلى معلم}$

محددة ثلاث متجهات في الفضاء

1. شرط استقامیة متجهتین

خاصیة 1: التكن u(x;y;z) و u(x;y;z) متجهتین غیر منعدمتین. المتجهتان v(x';y';z') و مستقیمیتان إذا و فقط إذا و جد عدد حقیقی v(x;y;z) بحیث v(x;y;z) و v(x;y;z) مستقیمیتان إذا و فقط إذا و جد عدد حقیقی v(x;y;z) بحیث v(x;y;z) و v(x;y;z) بحیث v(x;y;z) و v(x;y;z) بحیث v(x;y;z) و v(x;y;z) بحیث v(x;y;z) و v(x;y;z) و v(x;y;z) بحیث v(x;y;z) و v(x;z) و v(x;z)

ملحوظة:إذا كانت جميع إحداثيات كل من \vec{u} و \vec{v} غير منعدمة $\frac{x'}{x} = \frac{y'}{y} = \frac{z'}{z}$ فان : \vec{u} و \vec{v} مستقيميتان إذا وفقط إذا كانت

. الفضاء متجهتین من الفضاء $\vec{v}(x';y';z')$ و $\vec{u}(x;y;z)$

 \vec{v} و \vec{v} متجهتان مستقیمیتان إذا و فقط إذا کانت :

$$\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = 0 \quad \mathbf{9} \begin{vmatrix} x & x' \\ z & z' \end{vmatrix} = 0 \quad \mathbf{9} \begin{vmatrix} y & y' \\ z & z' \end{vmatrix} = 0$$

مثال : نعتبر في الفضاء المنسوب إلى الأساس ($\vec{i}; \vec{j}; \vec{k}$) المتجهات

 $\vec{w}(1;1;2)$ $\vec{v}(-2;2;-4)$ $\vec{u}(1;-1;2)$

 $\stackrel{v}{v}$ أدرس استقامية المتجهتين $\stackrel{u}{u}$ و

 \vec{w} و \vec{u} ادرس استقامیة المتجهتین و \vec{u} و الأجوبة: 1)نحسب المحددات المستخرجة: لدینا

$$\begin{vmatrix} 1 & -2 \\ -1 & 2 \end{vmatrix} = 2 - 2 = 0 \quad 0 \quad \begin{vmatrix} 1 & -2 \\ 2 & -4 \end{vmatrix} = -4 + 4 = 0 \quad 0 \quad \begin{vmatrix} -1 & 2 \\ 2 & -4 \end{vmatrix} = 4 - 4 = 0$$

ومنه المتجهتين $\overset{
ightarrow}{u}$ و منه المتجهتين

$$\begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix}$$
 =-2-2=-4 $\neq 0$ نحسب المحددات المستخرجة الدينا (2

ومنه المتجهتين \overrightarrow{u} و \overrightarrow{w} غير مستقيميتين

 $(o; \vec{i}; \vec{j}; \vec{k})$ معلم الفضاء المنسوب إلى معلم الفضاء الفضاء الفضاء المنسوب إلى معلم

D(2;3;3) و C(-1;4;-3) و B(2;1;3) و A(1;2;1)

C و B و A النقط A و B

D و B و A اندرس استقامیة النقط A

 $\overrightarrow{AB}(1;-1;2)$ يعني $\overrightarrow{AB}(2-1;1-2;3-1)$ (1 الأجوبة:

 \overrightarrow{AC} $\left(-2;2;-4\right)$ يعني $\overrightarrow{AC}\left(-1-1;4-2;-3-1\right)$

نُحسب المحددات المستخرجة ألدينا

$$\begin{vmatrix} 1 & -2 \\ -1 & 2 \end{vmatrix} = 2 - 2 = 0 \quad \begin{vmatrix} 1 & -2 \\ 2 & -4 \end{vmatrix} = -4 + 4 = 0 \quad \begin{vmatrix} -1 & 2 \\ 2 & -4 \end{vmatrix} = 4 - 4 = 0$$

ومنه المتجهتين \overrightarrow{AB} و \overrightarrow{AC} مستقيميتين وبالتالي النقط: A و B و C

 $\overrightarrow{AD}(1;1;2)$ $\overrightarrow{B}(1;-1;2)$ (2)

ومنهُ المتجهتين \overrightarrow{AB} و \overrightarrow{AB} و مستقيميتين $\begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix}$

وبالتالي النقط: A و B و D غير مستقيمية

2. متجهات مستوائية:

 $\vec{w}(x''; y''; z'')$ و $\vec{v}(x'; y'; z')$ و $\vec{u}(x; y; z)$ و $\vec{u}(x; y; z)$ تلاث متجهات من الفضاء .

 $D \in (D) \begin{cases} t = -1 \Leftrightarrow \begin{cases} -1 = 3 + 4t \end{cases} \quad 0 \quad C \notin (D) \end{cases} \quad 0 \quad C \notin (D) \begin{cases} t = -3 \Leftrightarrow -3 = 3 + 4t \end{cases}$ $\overline{BC}(1;-4;-1)$ و B(2;1;2) يمر من النقطة (3BC) يمر من النقطة $\left(BC\right)egin{cases} x=2+1t \\ y=1-4t & (t\in\mathbb{R}) \end{cases}$ متجهة موجهة له اذن $\vec{u}(-1;4;1) \ni \overrightarrow{BC}(1;-4;-1)$ (4 نلاحظ أن : $\overrightarrow{BC} = -\overrightarrow{u}$ ومنه \overrightarrow{BC} و منه غ \overrightarrow{BC} ومنه نلاحظ أن المستقیمین (D) و (BC) متوازیین تمرین(D) و (Δ) مستقیمین من الفضاء معرفان علی تمرین (D) $\begin{cases} x=1+t \\ y=1-t \end{cases}$ $(t\in\mathbb{R})$: التوالي بتمثيليهما البرامتريان $(\Delta) \begin{cases} x = 3 + k \\ y = -1 + 2k \end{cases} \quad (k \in \mathbb{R})$ بین أن المستقیمین (D) و (Δ) غیر متوازیین (D) متجهة موجهة ل $\vec{u}(1;-1;1)$ متجهة (Δ) متجهة موجهة ل $\vec{v}(1;2;-1)$ و نلاحظ أن : \vec{u} و \vec{v} غير مستقيميتين وبالتالي المستقيمين (D) و (Δ) غير متوازيين IV. تمثيل بارامترى لمستوى في الفضاء _ معادلة ديكارتية لمستوى 1. تمثيل بارامتري لمستوى في الفضاء تعریف: لتکن $A(x_A; y_A; z_A)$ نقطة من الفضاء و $\vec{v}(a';b';c')$ متجهتین غیر مستقیمتین. $\int x = x_A + at + a't'$ (P): $\begin{cases} y = y_A + bt + b't' : At = 1 \end{cases}$ النظمة التالية $z = z_A + ct + c't'$ $P(A; \vec{u}; \vec{v})$ و $(t \in \mathbb{R})$ تسمى تمثيلاً بار امتريا للمستوى $(t' \in \mathbb{R})$ \vec{v} و الموجه بالمتجهتين \vec{u} و الموجه بالمتجهتين الم مثال : حدد تمثیلا بارا متریا للمستوی $P(A;\vec{u};\vec{v})$ حیث: $\vec{v}(-1;0;2)$ $\vec{u}(-2;4;1)$ $\vec{v}(1;-3;1)$ $\int x = 1 - 2t - t'$ الجواب : $(t' \in \mathbb{R})$ و $(t \in \mathbb{R})$ حيث (P) هو تمثيل z = 1 + t + 2t' $P(A;\vec{u};\vec{v})$ بارا متریا للمستوی 2. معادلة ديكارتية لمستوى A(1;-3;1) مثال: حدد معادلة ديكارتيه للمستوى (P) المار من $\vec{v}(-1;0;2)$ و $\vec{u}(-2;4;1)$ و الموجه بالمتجهتين الجواب : نلاحظ أن $\vec{u}(-2;4;1)$ و $\vec{v}(-1;0;2)$ غير مستقيميتين يعني AMو \vec{v} و \vec{v} مستوائية $M(x;y;z) \in P(A;\vec{u};\vec{v})$

 $\det(\overrightarrow{AM}; \overrightarrow{u}; \overrightarrow{v}) = 0$: يعني $\det(\overrightarrow{AM}; \overrightarrow{u}; \overrightarrow{v}) = 0$

 $\begin{vmatrix} 1 & -2 & 0 \\ 1 & 1 & m \end{vmatrix} = 0$ $\det(\vec{u}; \vec{v}; \vec{y}) = 0$ m=2 يعني 6-3m=0 يعني $1 \begin{vmatrix} 1 & m \\ 1 & 2 \end{vmatrix} - 1 \begin{vmatrix} -2 & 1 \\ 1 & 2 \end{vmatrix} + 1 \begin{vmatrix} -2 & 1 \\ 1 & m \end{vmatrix} = 0$ $(o; ec{i}; ec{j}; ec{k})$ النقط المنسوب إلى معلم المنتبر في الفضاء المنسوب إلى معلم D(-1;1;2) \circ C(1;-3;2) \circ B(0;2;-1) \circ A(1;1;-2)E(1;1;3) و مستوائية D بين أن النقط A و B و C مستوائية 2. بين أن النقط A و B و C مستوائية? $\overrightarrow{AD}(-2;0;4)$ و $\overrightarrow{AC}(0;-4;4)$ و $\overrightarrow{AB}(-1;1;1)$ و $\det(\overrightarrow{AB}; \overrightarrow{AC}; \overrightarrow{AD}) = \begin{vmatrix} -1 & 0 & -2 \\ 1 & -4 & 0 \\ 1 & 4 & 4 \end{vmatrix} = -1 \begin{vmatrix} -4 & 0 \\ 4 & 4 \end{vmatrix} - 1 \begin{vmatrix} 0 & -2 \\ 4 & 4 \end{vmatrix} + 1 \begin{vmatrix} 0 & -2 \\ -4 & 0 \end{vmatrix} = 0$ ومنه : \overrightarrow{AB} و \overrightarrow{AD} مستوائية و بالتالى النقط A و B و CD مستوائیة AE(0;0;5) (2) $\det\left(\overrightarrow{AB}; \overrightarrow{AC}; \overrightarrow{AE}\right) = \begin{vmatrix} -1 & 0 & 0 \\ 1 & -4 & 0 \\ 1 & 4 & 5 \end{vmatrix} = -1 \begin{vmatrix} -4 & 0 \\ 4 & 5 \end{vmatrix} - 1 \begin{vmatrix} 0 & 0 \\ 4 & 5 \end{vmatrix} + 1 \begin{vmatrix} 0 & 0 \\ -4 & 0 \end{vmatrix} = 20 \neq 0$ ومنه : \overrightarrow{AB} و \overrightarrow{AE} غير مستوائية و بالتالي النقط A و B و و E غير مستوائية CIII. تمثيل بارامتري لمستقيم في الفضاء: $\vec{u}(a;b;c)$ نقطة من الفضاء و $A(x_A;y_A;z_A)$ تعریف:اتکن متجهة غير منعدمة من الفضاء $\begin{cases} x=x_A+at \\ y=y_A+bt \end{cases}$ النظمة: $\begin{cases} x=x_A+at \\ y=y_A+bt \end{cases}$ $z = z_A + ct$ المار من A و \bar{u} متجهة موجهة له $D(A;\bar{u})$ $(o;ec{i};ec{j};ec{k})$ النقط المنسوب إلى معلم المتبر في الفضاء المنسوب ال و D(2;-1;0) و B(2;1;2) و B(1;3;1) $\vec{u}(-1;4;1)$ مدد تمثیلا بارا متریا للمستقیم (D) المار من A و الموجه (1) \bar{u} بالمتجهة (2;-1;0) و (2;-1;0) تنتمي للمستقيم (2) هل النقط (2;-1;0) و (3;-3;1)(BC) حدد تمثیلا بارا متریا للمستقیم (3 (BC) و (D) أدر س الوضع النسبي للمستقيمين (D $\int x = 1 - t$ $(D) \left\{ y = 3 + 4t \ (t \in \mathbb{R}) \ (1 : 1 + 2t) \right\}$ z = 1 + t[2 = 1 - t] $B \notin (D)$ $\begin{cases} t = -\frac{1}{2} \Leftrightarrow \begin{cases} 1 = 3 + 4t \end{cases} \end{cases}$ (2) 2 = 1 + t

t = -1

فان : (P) و (Q) متقاطعان وفق مستقیم. ملحوظة:اليكن $(P)_{e}(P')$ مستويين من الفضاء معرفين بمعادلتيهما الديكار تيتين: $(a;b;c) \neq (0;0;0) \approx (P) : ax + by + cz + d = 0$ $(a';b';c') \neq (0;0;0)$ عبد (P'): a'x + b'y + c'z + d' = 0 و ا. يكون المستويان (P') و (P') متقاطعين إذا وفقط إذا كان : $bc' - cb' \neq 0$ $ab' - ca' \neq 0$ $ab' - ba' \neq 0$ 2. يكون المستويان (P') و (P') متوازبين إذا وفقط إذا وجد عدد c' = kc و b' = kb و a' = ka : حقیقی غیر منعدم k بحیث 3. يكون المستويان (P') و (P') منطبقين إذا وفقط إذا وجد عدد : حقیقی غیر منعدم k بحیث d' = kd و c' = kc و b' = kb و a' = ka(P):3x-3y-6z-2=0 و (Q):x-y-2z-3=0k=3 المستویان (P') و (P') متوازیین قطعا $(o;ec{i};ec{j};ec{k})$ النقطة المنسوب إلى معلم تعتبر في الفضاء المنسوب إلى معلم المتبر في الفضاء المنسوب الم $\vec{v}(1;-1;2)$ و $\vec{u}(1;1;1)$ و المتجهتين A(1;1;0)(Q) x+y-z+1=0 : الذي معادلة الديكارتية و المستوى المار من A و الموجه (P) أعط معادلة ديكارتية للمستوى (P)v و u بالمتجهتين (P) و (Q) ادر س الوضع النسبي للمستوبين (Q) و (Q)الجواب: 1) نلاحظ أن $\vec{u}(1;1;1)$ و $\vec{v}(1;-1;2)$ غير مستقيميتين يعني \overrightarrow{AM} و \overrightarrow{v} عند \overrightarrow{V} و \overrightarrow{u} و \overrightarrow{V} مستوائية $M(x;y;z) \in P(A;\overrightarrow{u};\overrightarrow{v})$ $\det\left(\overrightarrow{AM}; \overrightarrow{u}; \overrightarrow{v}\right) = 0$ يعني $\det\left(\overrightarrow{AM}; \overrightarrow{u}; \overrightarrow{v}\right) = 0$ $\overrightarrow{AM}(x-1;y-1;z)$ $|y-1 \ 1 \ -1|=0$: $|y-1 \ 1 \ -1|$ $(x-1)\begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} - (y-1)\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + z\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = 0$: (P): 3x-y-2z-2=0:يعني 3(x-1)-(y-1)-2z=0:(P):3x-y-2z-2=0 (Q):x+y-z+1=0 (2) اذن (Q) و (P) متقاطعین $3\times 1-1\times (-1)=4\neq 0$ V.معادلتان دیکارتیتان لمستقیم و $A(x_A; y_A; z_A)$ من المار من $D(A; \overline{u})$ تعریف وخاصیه: متجهة موجهة له. $\vec{u}(a;b;c)$ و $c \neq 0$ و $b \neq 0$ فان النظمة: $a \neq 0$ فان النظمة: $\frac{x-x_A}{a} = \frac{y-y_A}{b} = \frac{z-z_A}{c}$ تسمى: معادلتان ديكار تيتان للمستقيم D a=0 الأعداد a أو b أو منعدما (مثلا \clubsuit : و $b \neq 0$ و $c \neq 0$ فان النظمة: $x = x_A$ و $x = \frac{y - y_A}{b}$ تسمى Dمعادلتان ديكار تيتان للمستقيم اف کان عددان من الأعداد a أو b أو منعدمان 4

 $y=y_A$ و a=0 و b=0 فان النظمة: a=0 و a=0

. D معادلتان ديكار تيتان للمستقيم

 $\begin{vmatrix} x-1 & -2 & -1 \\ y+3 & 4 & 0 \end{vmatrix} = 0$: $\overrightarrow{AM}(x-1;y+3;z-1)$ $(x-1)\begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} - (y+3)\begin{vmatrix} -2 & -1 \\ 1 & 2 \end{vmatrix} + (z-1)\begin{vmatrix} -2 & -1 \\ 4 & 0 \end{vmatrix} = 0$: يعني 8x-8+3y+9+4z-4=0: يعني 8(x-1)+3(y+3)+4(z-1)=0(P): 8x+3y+4z-3=0:يعني تعریف: لتکن $(x_A; y_A; z_A)$ نقطة من الفضاء و \vec{u} و متجهتین غير مستقيمتين. معادلة ديكارتيه للمستوى (P) المار من A و الموجه بالمتجهتين u و حيث ax + by + cz + d = 0: حيث على الشكل $(a;b;c) \neq (0;0;0)$: عداد حقیقیة بحیث a و b و cخاصية: مجموعة النقط M(x;y;z) من الفضاء التي تحقق العلاقة : هي مستوى $(a;b;c) \neq (0;0;0)$: بحیث ax+by+cz+d=0 $(o; \vec{i}; \vec{j}; \vec{k})$ معلم الفضاء المنسوب إلى معلم الفضاء المنسوب إلى معلم الفضاء الفضاء المنسوب المعلم C(-1;2;-1) و B(1;1;2) و A(1;2;3)بين أن النقط A و B و C غير مستقيمية (1)(ABC) أعط تمثيلا بارامتريا للمستوى (3) أعط معادلة ديكارتية للمستوى (ABC) $\overrightarrow{AB}(0;-1;-1)$ و $\overrightarrow{AC}(-2;0;-4)$ (1) $d_1 = \begin{vmatrix} -1 & 0 \\ -1 & -4 \end{vmatrix} = 4 \neq 0$ نحسب المحددات المستخرجة :لدينا ومنه المتجهتين \overrightarrow{AB} و \overrightarrow{AC} غير مستقيميتين وبالتالي النقط: A و و C غير مستقيمية Bلدينا المستوى \overrightarrow{AC})يمر من النقطة A و \overrightarrow{ABC} متجهتين (2 $\int x = 1 + 0t - 2t'$ $(t' \in \mathbb{R})$ و $(t \in \mathbb{R})$ موجهتین له اذن y = 2 - 1t + 0t' و y = 2 - 1t + 0t'z = 3 - 1t - 4t'هو تمثيل بارامتري للمستوى (ABC) يعني \overrightarrow{AM} و \overrightarrow{AB} و \overrightarrow{AB} مستوائية $M(x;y;z) \in (ABC)(3)$ $\det\left(\overrightarrow{AM}; \overrightarrow{AB}; \overrightarrow{AC}\right) = 0$: يعني $\begin{vmatrix} y-2 & -1 & 0 \end{vmatrix} = 0$ $\overrightarrow{AM}(x-1;y-2;z-3)$ $(x-1)\begin{vmatrix} -1 & 0 \\ -1 & -4 \end{vmatrix} - (y-2)\begin{vmatrix} 0 & -2 \\ -1 & -4 \end{vmatrix} + (z-3)\begin{vmatrix} 0 & -2 \\ -1 & 0 \end{vmatrix} = 0$ 4x-4+2y-4-2z+6=0 : يعني 4(x-1)+2(y-2)-2(z-3)=0 : يعني (P): 2x+y-z-1=0:يعني 4x+2y-2z-2=0:3. الأوضاع النسبية لمستويين في الفضاء خاصية:اليكن $(P) = P(A; \vec{u}; \vec{v})$ عا $(Q) = P(B; \vec{u}'; \vec{v}')$ مستويين من الفضاء لدينا: $\det(\vec{u}; \vec{v}; \vec{v'}) = 0 \quad \det(\vec{u}; \vec{v}; \vec{u'}) = 0 \quad .1$ فان : (P) و (Q) منطبقان أو متوازيان قطعا.

 $\det(\vec{u}; \vec{v}; \vec{v}') \neq 0$ أو $\det(\vec{u}; \vec{v}; \vec{u}') \neq 0$.2

(P):5x+2y-3z-10=0 الجواب اذن : -1=0 غير ممكن -1=0 يعني -1=0 يعني -1=0 غير ممكن اذن : (D) و (P) متوازیان قطعا $(P) = P(B; \vec{u}; \vec{v})$ و $(D) = D(A; \vec{w})$ خاصیة:ایکن $(D)\subset (P)$ فان $A\in (P)$ و $\det(u,v,w)=0$ (P) فان (D) يوازي قطعا (P) فان (D) فان (D) فان طعا (D)(P) فان $\det(\vec{u}, \vec{v}, \vec{w}) \neq 0$ فان (D) فان $\det(\vec{u}, \vec{v}, \vec{w}) \neq 0$ $\vec{u}(1;-1;1)$ عثال $(P) = P(B;\vec{u};\vec{v})$ و $(D) = D(A;\vec{w})$ و عثال $(D) = D(A;\vec{w})$ B(1;0;0) و V(0;0;-1) و V(0;2;0) و V(0;1;0) $(P) = P(B; \vec{u}; \vec{v})$ حدد معادلة ديكارتية للمستوى (D) أدرس الوضع النسبي للمستوى (P) و المستقيم (2 الجواب: 1)نلاحظ أن $\vec{v}(0;1;0)$ و $\vec{v}(0;1;0)$ غير مستقيميتين يعني \overrightarrow{BM} و \overrightarrow{v} عنوائية $M(x;y;z) \in P(B;\overrightarrow{u};\overrightarrow{v})$ $\det(\overrightarrow{AM}; \overrightarrow{u}; \overrightarrow{v}) = 0 : \underbrace{\mathbf{grad}}_{\mathbf{grad}} \det(\overrightarrow{AM}; \overrightarrow{u}; \overrightarrow{v}) = 0$ $\begin{vmatrix} x-1 & 1 & 0 \\ y & -1 & 1 \\ z & 1 & 0 \end{vmatrix} = 0$: يعني $\overrightarrow{BM}(x-1;y;z)$ $(x-1)\begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} - y\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} + z\begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 0$ $\left(P
ight):$ -x+z+1=0: يعني $_{-(x-1)-0+z=0}$ $\det\left(\vec{u}; \vec{v}; \vec{w}\right) = \begin{vmatrix} 1 & 0 & 0 \\ -1 & 1 & 2 \\ 1 & 0 & 0 \end{vmatrix} = 1 \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} + 1 \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} + 1 \begin{vmatrix} 0 & 0 \\ 1 & 2 \end{vmatrix} = 0 \quad \underline{(2)}$ $A \in (P)$ لأن $A \in (P)$

 $\cdot (D) = D(A; \overline{u})$ مثال : حدد معادلتان ديكار تيتان للمستقيم (\overline{u}) عدد معادلتان ديكار تيتان للمستقيم (\overline{u}) عدد معادلتان ديكار تيتان للمستقيم موجهة له. $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-2}{3} \quad \frac{x-x_A}{a} = \frac{y-y_A}{b} = \frac{z-z_A}{c}$ $\begin{cases} \frac{x-1}{1} = \frac{y+1}{2} \\ \frac{x-1}{1} = \frac{z-2}{3} \end{cases}$ $\begin{cases} 2(x-1) = y+1 \\ 3(x-1) = z-2 \end{cases}$ 3(x-1) = z-2 3(x-1) = z-2

 $\cdot (D) = D(A; \vec{u})$ مثال : حدد معادلتان ديكارتيتان للمستقيم : عدد معادلتان ديكارتيتان المستقيم $\vec{u}(0;1;2)$ و A(1;-1;3) : حيث :

$$\begin{cases} x=1 \\ \frac{y+1}{1} = \frac{z-3}{2} \Leftrightarrow \begin{cases} x=1 \\ 2(y+1) = z-3 \end{cases} \Leftrightarrow \begin{cases} x=1 \\ 2y-z+5=0 \end{cases}$$

VI. الأوضاع النسبية لمستقيم ومستوى في الفضاء- دراسة تحليلية:

$$(D) \begin{cases} x = 1 + t \\ y = 2 - t \\ z = 3 + 2t \end{cases} (t \in \mathbb{R}) \cup (P) : 3x - y - 2z - 2 = 0 : 1$$

(D) أدرس الوضع النسبي للمستوى (P)و المستقيم الحواب : (P): x+y-z+1=0

اذن :
$$(D)$$
 : $\frac{1}{2}$ يعني $(1+t)+(2-t)-(3+2t)t+1=0$: الخن : (P) في النقطة : (P) في النقطة : (P) في النقطة : (P) عند (P) و (P) المستوى (P) عند (P) عند (P) المستوى $($

هي نقطة التقاطع
$$A\left(\frac{3}{2}; \frac{3}{2}; 4\right)$$

$$(D) \begin{cases} x = 1 + 2t \\ y = -1 + t \end{cases} (t \in \mathbb{R}) \quad \mathfrak{g}(P) : 3x - y - 2z - 2 = 0$$

(D) أدرس الوضع النسبي للمستوى (P)و المستقيم

 $(D) \subset (P)$ **&**

أكاديمية الجهة الشرقية نيابة وجدة

مادة الرياضيات

المستوى: الأولى باك علوم تجريبية الأستاذ: عثماني نجيب مذكرة رقم/11

مذكرة رقم 11 في درس حراسة الدوال

الأهداف و القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
_ ينبغي الاقتصار على تحديد نهايات دوال	- حل مبياني لمعادلات ومتر اجحات؛	_ الفروع اللانهانية: المستقيمات المقاربة؛
بسيطة (دوال حدودية من الدرجة الثانية	_ استعمال الدورية وعناصر تماثل منحني في	الاتجاهات المقاربة؛
والدرجة الثالثة أو دوال من الشكل	اختصار مجموعة دراسة دالة؛	- نقط الانعطاف؛ تقعر منحنى دالة؛
$\lim_{x \to ax} \varphi(x) = 0 \xrightarrow{x \to ax + b + \varphi(x)}$	_ استعمال إشارة المشتقة الثانية لدراسة تقعر	 عناصر تماثل منحنى دالة.
محدات مجموعات تعريفها وتحديد فروعها	منحنى وتحديد نقط انعطافه؛	
اللانهانية؛	_ در اسة وتمثيل دوال حدودية ودوال جذرية	
ـ ينبغى دراسة دوال لا يطرح حساب وإشارة	ودوال لاجذرية؛	
مشتقاتها صعوبة بالغة؛	ـ در اسة وتمثيل دوال مثلثية بسيطة.	
_ ينبغي تناول الحل المبياني لمعادلات		
$f(x) \le c$ و متراجعات من النوع		
$f(x) < g(x)$ $g(x) = g(x)$ $f(x) \le g(x)$		
حيث f و g دالتان من بين الدوال الواردة		
في البرنامج إذا لم يكن الحل الجبري في		
المتناول.	-8	

I. المستقيمات المقاربة

 $\left(o; \overrightarrow{i}; \overrightarrow{j}\right)$ معلم متعامد إلى معلم متعامد في جميع فقرات الدرس , ننسب المستوى إلى معلم متعامد

1. فرع لا نهائي لمنحنى دالة عددية

تعریف لتکن f دالة عددیة لمتغیر حقیقی χ

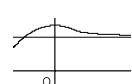
 $(c_i, \vec{i}; \vec{j})$ منحناها في المعلم (c_f)

إذا آلت إحدى احداثيي نقطة من $\left(C_{_{f}}
ight)$ إلى ما لا

نهاية , نقول إن (C_{f}) يقبل فرعا \hat{V} نهائيا.

2. المفاارب الموازي لمحور الأراتيب

تعریف: إذا کانت:



 $\lim f(x) = -\infty$ $\lim f(x) = +\infty$

 $\lim_{x \to \infty} f(x) = -\infty$ $\lim_{x \to \infty} f(x) = +\infty$

نقول إن المستقيم ذا المعادلة x=a مقارب

مثال: نعتبر الدالة العددية f للمتغير الحقيقى χ المعرفة كالتالى:

 $f\left(x\right) = \frac{2x-1}{3x-6}$

وأول النتيجتين هندسيا $\lim_{x \to 2^+} f(x)$ وأول النتيجتين هندسيا

 $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{2x - 1}{3x - 6}$

x	$\overset{\infty}{-}$	2	$+\infty$
3x6		þ	+

 $\lim 3x - 6 = 0^-$ **9** $\lim 3x - 6 = 0^+$ **9** $\lim 2x - 1 = 3$

 $\lim_{x \to \infty} f(x) = -\infty$ $\lim_{x \to \infty} f(x) = +\infty$:

 (C_f) مقارب المنتقيم ذا المعادلة x=2 مقارب المنحنى التأويل المبياني:

والمفاارب الموازي لمحور الأفاصيل

 $\left(C_{f}
ight)$ مقارب للمنحنى y=a مقارب المنحنى نقول إن المستقيم ذا المعادلة $(-\infty)$ بجوار ∞

f نعتبر الدالة العددية

 $f(x) = \frac{6x+1}{2x-5}$: المعرفة كالتالي x المعرفة كالتالي

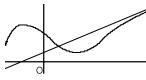
حدد $\lim_{x \to +\infty} f(x)$ و النتیجتین هندسیا حدد السلام و ا

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{6x}{2x} = \frac{6}{2} = 3$ يا $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{6x}{2x} = \frac{6}{2} = 3$

 (C_c) مقارب للمنحنى y = 3 المعادلة والمنحنى المنحنى المنحنى المفاارب المائل

لتكن f دالة عددية لمتغير حقيقي x و تقبل نهاية غير منتهية $(-\infty)$ بجوار ∞

 $(\lim f(x) - (ax+b) = 0)$ $\lim f(x) - (ax+b) = 0$



 $b\in\mathbb{R}$ و $a\in\mathbb{R}^*$ حيث نقول إن المستقيم ذا المعادلة مائل مائل y = ax + b (C_f) بجوار + ∞ المنحنى

 $-\infty$).

مثال: نعتبر الدالة العددية f للمتغير الحقيقي χ المعرفة

$$f(x) = 2x - 1 + \frac{1}{x - 3}$$
 : كالتالي

f مجموعة تعريف الدالة D_f محدد.

 $+\infty$ بجوار f بجوار المائل لمنحنى الدالة f بجوار 2

$D_f = \mathbb{R} - \left\{3\right\} = \left]-\infty; 3\left[\,\cup\,\right] 3; +\infty \left[\, \begin{array}{cc} \text{ais} & D_f = \left\{x \in \mathbb{R}/x - 3 \neq 0\right\} \left(\,1\right\} \right] \right\}$

$$f(x) - (2x - 1) = \frac{1}{x - 3}$$

$$f(x) = 2x - 1 + \frac{1}{x - 3}$$

$$(2x - 1) = \frac{1}{x - 3}$$

التأويل الهندسي : يقبل فرعا شلجميا التجاهه التأويل الهندسي $+\infty$ المستقيم ذي المعادلة $y = -x \Leftrightarrow y = (-1)x$ التقعر منحنى _ نقط الانعطاف (C_f) و I على مجال I دالة قابلة للاشتقاق مرتين على مجال f $(o; \vec{i}; \vec{j})$ منحناها في المعلم

ا تقعر ا كانت f'' موجبة على المجال I فإن للمنحنى f'' تقعر ا موجها نحو محور الأراتيب الموجبة.

إذا كانت f'' سالبة على المجال I فإن للمنحنى f'' تقعر ا موجها نحو محور الأراتيب السالبة.

انت f'' تنعدم في النقطة $x_0 \in I$ وتتغير إشارتها # $A\left(x_{o};f\left(x_{o}
ight)
ight)$ نقطة انعطاف المنحنى بجوار $A\left(x_{o};f\left(x_{o}
ight)
ight)$ \mathbb{R} على الدالة العددية f المعرفة على مثال:

$$f(x) = \frac{1}{12}x^4 - 2x^2 + x + \frac{2}{3}$$
 : كالتالي

 \mathbb{R} من f''(x) اکل f''(x) من

f أدرس تقعر المنحني (C_f) الممثل للدالة 2. مع تحديد نقطتي انعطافه

$$f'(x) = \left(\frac{1}{12}x^4 - 2x^2 + x + \frac{2}{3}\right)' = \frac{1}{12}4 \times x^3 - 4x + 1 = \frac{1}{3}x^3 - 4x + 1$$
$$f''(x) = \left(\frac{1}{3}x^3 - 4x + 1\right)' = x^2 - 4$$
$$(x-2)(x+2) = 0 \Leftrightarrow x^2 - 2^2 = 0 \Leftrightarrow x^2 - 4 = 0 \Leftrightarrow f''(x) = 0(2x^2 - 2x^2)$$
$$x = -2 \Rightarrow x = 2 \Leftrightarrow x = 2$$

- تقعر $\binom{C_f}{r}$ موجه نحو محور الأراتيب الموجبة على المجال: $]-\infty;-2]\cup[2;+\infty[$
- [-2,2] موجه نحو محور الأراتيب الموجبة على المجال: (C_f) يمكن تلخيص النتائج في جدول التقعر

و B(-1,f(-1)) و A(1,f(1))

IV.محور تماثل _ مركز تماثل

خاصية: لتكن f دالة عددية لمتغير حقيقي x معرفة

 $(o; ec{i}; ec{j})$ على مجموعة D و (C_f) منحناها في المعلم

x=a يكون المستقيم ذو المعادلة \star

محور تماثل المنحنى $(a \in \mathbb{R})$

 $[(\forall x \in D); (2a-x) \in D$: فقط إذا كان $(\forall x \in D); f(2a-x) = f(x)$

 (C_{ϵ}) مركز ماثل المنحنى $\Omega(a;b)$ مركز ماثل المنحنى

 $\big[\big(\forall x\in D\big); \big(2a-x\big)\in D$: إذا وفقط إذا كان $(\forall x \in D); f(2a-x) = 2b - f(x)$

مثال 1 نعتبر الدالة العددية f للمتغير الحقيقي χ المعرفة $f(x) = \sqrt{x - x^2}$: کالتالي

f حدد حيز تعريف الدالة

يعني $\lim_{x \to +\infty} f(x) - (2x-1) = \lim_{x \to +\infty} \frac{1}{x-3} = \frac{1}{+\infty} = 0$

 $+\infty$ بجوار مقارب مائل للمنحنى y=2x-1

ماثلا مائلا مائلا

 $\lim_{x \to \infty} \frac{f(x)}{x} = a$: إذا وفقط إذا كان $+\infty$ بجوار (C_f) لمنحنى

 $\lim f(x) - ax = b$

II.الفروع الشلجمية

لتكن f دالة عددية لمتغير حقيقي x بحيث تقبل نهاية لا منتهية بجوار $(o;ec{i};ec{j})$ منحناها في معلم متعامد $(c_{\!\scriptscriptstyle f})$ و $(-\infty)$ ب

2. فرع شلجمي اتجاهه محور الأفاصيل

تعریف:إذا کانت $\lim_{x \to -\infty} \frac{f(x)}{x} = 0$) $\lim_{x \to \infty} \frac{f(x)}{x} = 0$ نقول إن المنحنى

يقبل فرعا شلجميا اتجاهه محور (C_f)

 $f(x)=\sqrt{x}$) الأفاصيل بجوار $\infty+$ (أو بجوار $\infty-$) مثال: نعتبر الدالة العددية $f(x)=\sqrt{x}$ المعرفة كالتالي

أحسب $\lim_{x \to \infty} \frac{f(x)}{x}$ وأول هندسيا النتيجة

 $\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} \frac{\sqrt{x}}{x} = \lim_{x\to +\infty} \frac{1}{\sqrt{x}} = \frac{1}{+\infty} = 0$

التأويل الهندسي : $(C_{_f})$ يقبل فرعا شلجميا اتجاهه محور

 $+\infty$ الأفاصيل بجوار

3. فرع شلجمي اتجاهه محور الأراتيب

 $\lim_{x \to +\infty} \frac{f(x)}{r} = -\infty$ أو $\lim_{x \to +\infty} \frac{f(x)}{r} = +\infty$ تعریف:إذا كانت

$$\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$$
 أو $\lim_{x \to -\infty} \frac{f(x)}{x} = +\infty$

بن المنحنى $\binom{C_f}{2}$ يقبل فر عا شلجميا اتجاهه محور الأراتيب

: المعرفة كالتالي للمتغير الحقيقي χ المعرفة كالتالي المثال ينعتبر الدالة العددية f

ا أحسب $f(x) = \lim_{x \to \infty} \frac{f(x)}{x}$ النتيجة $f(x) = x^3$

 $\lim_{x \to +\infty} \frac{x^3}{x} = \lim_{x \to +\infty} x^2 = +\infty = +\infty$

التأويل الهندسي : (C_{f}) يقبل فرعا شلجميا اتجاهه محور $+\infty$ الأراتيب بجوار $+\infty$

 $a \neq 0$ حيث y = ax فرع شلجمي اتجاهه المستقيم ذو المعادلة

 $\lim_{x\to +\infty} f(x) - ax = +\infty$ ينس باذا كانت: $\lim_{x\to +\infty} \frac{f(x)}{x} = a$

نقول إن المنحنى $\binom{C_f}{}$ يقبل فرعا شلجميا اتجاهه المستقيم ذي المعادلة

 $(-\infty$ بجوار + ∞ بجوار + ∞ بجوار y=ax

: المعرفة كالتالي للمتغير الحقيقي x المعرفة كالتالي f

 $f(x) = \sqrt{x} - x$

 $\lim_{x \to \infty} f(x)$ و أحسب أدالة أو أحسب 1.

f الدالة الفرع اللانهائي لمنحنى الدالة 2

 $D_f = \mathbb{R}^+ \ (1 : 1)$ الجواب

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{x} - x = \lim_{x \to +\infty} \sqrt{x} \left(1 - \sqrt{x} \right) = -\infty$$
 (2)

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x} - x}{x} = \lim_{x \to +\infty} \frac{\sqrt{x}}{x} - 1 = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} - 1 = \frac{1}{+\infty} - 1 = -1 = a(3)$$

$$\lim_{x \to +\infty} f(x) - ax = \lim_{x \to +\infty} f(x) - (-1)x = \lim_{x \to +\infty} f(x) + x = \lim_{x \to +\infty} \sqrt{x} = +\infty$$

f الممثل الدالة $x=rac{1}{2}$ الممثل الدالة $x=rac{1}{2}$ الممثل الدالة .2

$$D_f = \left\{ x \in \mathbb{R} / x - x^2 \ge 0 \right\} f(x) = \sqrt{x - x^2} (1)$$

$$x = 1$$
 $x = 0$ \Rightarrow $x = 0$ \Rightarrow $x - x^2 = 0$ ومنه جدول الاشارة:

$$-\infty$$
 0 1 $+\infty$

 $D_f = [0,1]$:each

$$x = \frac{1}{2}$$
 يعني $x = a$ (2)

 $1-x\in[0,1]$ نبین أنه : اذا کانت $x\in[0,1]$ فان : اذا کانت (أ

$$\Leftrightarrow 1 - 1 \le 1 - x \le 1 + 0 \Leftrightarrow -1 \le -x \le 0 \Leftrightarrow 0 \le x \le 1 \Leftrightarrow x \in [0, 1]$$

 $1 - x \in [0,1] \Leftrightarrow 0 \le 1 - x \le 1 \Leftrightarrow$

f(1-x) = f(x) : نبین أن

$$f(1-x) = \sqrt{(1-x)-(1-x)^2} = \sqrt{1-x-(1-2x+x^2)}$$
$$= \sqrt{1-x-1+2x-x^2} = \sqrt{x-x^2} = f(x)$$

ومنه $\frac{1}{2}$ محور تماثل منحنى الدالة $x = \frac{1}{2}$

: المعرفة كالتالي المثغير الحقيقي x المعرفة كالتالي المثابي يعتبر الدالة العددية f

$$f\left(x\right) = \frac{x^2 - x}{x + 1}$$

$$\forall \in D_f \ f(x) = x - 2 + \frac{2}{x+1}$$
 بين أن .1

. f مرکز تماثل منحنی الداله $\Omega(-1;-3)$ مرکز بین أن النقطة

$$x-2+\frac{2}{x+1}=\frac{(x-2)(x+1)+2}{x+1}=\frac{x^2-x}{x+1}=f(x)$$
 (1): الجواب

$$\Omega(a;b)$$
 $\Omega(-1;-3)$ (2

$$???-2-x \in \mathbb{R}-\{-1\}$$
 : فان $x \in \mathbb{R}-\{-1\}$ نبین أنه : اذا كانت $x \in \mathbb{R}-\{-1\}$

$$\Leftrightarrow -2-x\neq -2+1 \Leftrightarrow -x\neq 1 \Leftrightarrow x\neq -1 \Leftrightarrow x\in \mathbb{R}-\left\{-1\right\}$$

$$-2-x \in \mathbb{R} - \{-1\} \Leftrightarrow -2-x \neq -1 \Leftrightarrow$$

$$f(-2-x)+f(x)=-6=2b$$
 : نبین أن

$$f(-4-x)+f(x)=-4-x-1+\frac{1}{-4-x+2}+x-1+\frac{1}{x+2}$$

$$=-4-2+\frac{1}{-x-2}+\frac{1}{x+2}=-6+-\frac{1}{x+2}+\frac{1}{x+2}=-6$$

. f مركز تماثل منحنى الدالة $\Omega(-2;-3)$

 $f(x) = \frac{1}{3}x^3 - 4x$: نعتبر الدالة f المعرفة كالتالي:

$$f$$
 عيز تعريف الدالة D_f عدد عريف الدالة

$$f$$
 أدرس زوجية الدالة f

$$D_{\epsilon}$$
 تعد محدات الدالة f عند محدات 3.

$$f^{'}$$
 أدرس الفروع اللانهاية لمنحنى الدالة 4

5. أحسب مشتقة الدالة
$$f$$
 و أدرس إشارتها

$$f$$
 مدد جدول تغیرات الداله f

في
$$f$$
 في الممثل للدالة في المنطنى في الممثل للدالة f

$$x_0 = -1$$
 التي أفصولها A

8. حدد نقط تقاطع المنحني
$$\binom{C_f}{f}$$
 الممثل للدالة مع محوري المعلم.

و. حدد مطاریف الداله
$$f$$
 اذا وجدت

أرسم المنحني $\left(C_{_{f}}\right)$ الممثل للدالة f في معلم متعامد ممنظم الله حدودية $D_f = \mathbb{R} \left(1_{f(x)} = \frac{1}{3} x^3 - 4x \right)$

 $-x \in \mathbb{R}$ فان $x \in \mathbb{R}$ اذا كانت

$$f(-x) = \frac{1}{3}(-x)^3 - 4(-x) = -\frac{1}{3}x^3 - 4(-x) = -\left(\frac{1}{3}x^3 - 4x\right) = -f(x) \quad (\Box$$

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty \quad \Im \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$ (3) لأن نهاية دالة حدودية عند مالانهايةهي نهاية حدها الأكبر درجة

 $\lim_{x\to +\infty}\frac{f\left(x\right)}{x}=\lim_{x\to +\infty}\frac{\frac{1}{3}x^3}{x}=\lim_{x\to +\infty}\frac{1}{3}x^2=+\infty\ (4+\infty)$ يقبل فر عا شلجميا اتجاهه محور الأراتيب بجوار $\binom{C_f}{x}$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\frac{1}{3}x^3}{x} = \lim_{x \to -\infty} \frac{1}{3}x^2 = +\infty$$

 $-\infty$ يقبل فر عا شلجميا اتجاهه محور الأراتيب بجوار (C_f)

$$f'(x) = \left(\frac{1}{3}x^3 - 4x\right)' = \frac{1}{3}3 \times x^2 - 4 = x^2 - 4$$
 (5

 $(x-2)(x+2)=0 \Leftrightarrow x^2-2^2=0 \Leftrightarrow x^2-4=0 \Leftrightarrow f'(x)=0$

x = -2 $x = 2 \Leftrightarrow$

(6

x	$-\infty$	-2		2	+∞
f'(x)	+	þ	_	þ	+
f(x)		× 16/3	\ <u></u>	-16/3	→ +∞

 $x_0 = -1$ معادلة لمماس ل $\left(C_f
ight)$ في النقطة A التي أفصولها (7)

$$f'(-1) = -3$$
 $g_{f(-1)} = \frac{11}{3}$ $g_{f(x_0)} + f'(x_0)(x - x_0)$

$$y = -3x + \frac{2}{3} \Leftrightarrow y = \frac{11}{3} - 3(x+1) \Leftrightarrow y = f(-1) + f'(-1)(x+1)$$

المنحنى الممثل للدالة f مع محور الأفاصيل $\left(C_{f}
ight)$ المنحنى الممثل الدالة أ

$$\frac{1}{3}x^3 - 4x = 0$$
 يعني $f(x) = 0$: نحل فقط المعادلة

$$\frac{1}{3}x^2 - 4 = 0$$
 يعني $x = 0$ يعني $x = 0$ يعني $x = 0$

 $x = -\sqrt{12}$ يعني $x = \sqrt{12}$ او $x = \sqrt{12}$ يعني x = 0 يعني x = 0 $x = -2\sqrt{3}$ يعني x = 0 أو $x = 2\sqrt{3}$

O(0,0) و منه نقط التقاطع هم $A(2\sqrt{3},0)$: ومنه نقط التقاطع

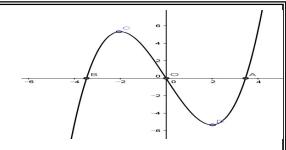
ب)نقط تقاطع $\left(C_{f}
ight)$ المنحنى الممثل للدالة f مع محور الأراتيب

Q(0) : نحسب فقط التقاطع هي f(0)=0 لدينا نحسب فقط التقاطع

f هي قيمة قصوى للدالة $f(-2) = \frac{16}{2}$

f التمثيل المبياني للدالة)

الأستاذ: عثماني نجيب



 $g(x) = \frac{2x+1}{x+1}$: المعرفة بن الدالة العددية g(x)

- 1. حدد حيز تعريف الدالة ع.
- 2. أحسب نهايات الدالمة g في محدات حيز التعريف و أول النتائج g
 - g أحسب الدلة المشتقة. ثم ضع جدول تغيرات الدالة g
 - 2. أنشئ منحنى الدالة g .

انحل

$$D = \{x \in \mathbb{R}/x + 1 \neq 0\} = \mathbb{R} - \{-1\}$$
 هو g هريف الدالة g هو $D =]-\infty, -1[\bigcup]-1, +\infty[$ و منه

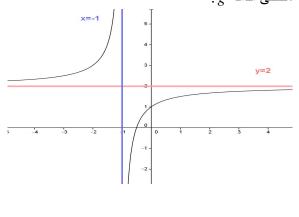
$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{2x+1}{x+1} = \lim_{x \to \infty} \frac{2x}{x} = 2^{3} \lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{2x+1}{x+1} = \lim_{x \to \infty} \frac{2x}{x} = 2(2)$$

بعنى المستقيم ذا المعادلة v=2 مقارب أفقى للمنحنى (C_{\cdot}) .

$$\lim_{x \to \Gamma} g(x) = \lim_{x \to \Gamma} \frac{2x+1}{x+1} = +\infty \quad \lim_{x \to \Gamma} g(x) = \lim_{x \to \Gamma} \frac{2x+1}{x+1} = -\infty$$

منحنى الدالة و.

4)جدول تغيرات الدالة.



تمرين \mathbf{g} : نعتبر الدالة f المعرفة كالتالى:

$$f(x) = \sqrt{4x^2 + 2x - 2}$$

$$f'(x)$$
 و حدد D_f .1

$$\lim f(x)$$
: .2

$$\lim_{x \to -\infty} f(x) + 2x : \lim_{x \to -\infty} \frac{f(x)}{x} = -2 :$$
 يين 3.

$$-\infty$$
 بجوار بالمائل لمنحنى الدالة f بجوار 4.

$$D_f = \left\{ x \in \mathbb{R} / 4x^2 + 2x - 2 \ge 0 \right\}$$
 (1: أجوبة

$$2x^2 + x - 1 = 0 \iff 4x^2 + 2x - 2 = 0$$

$$\Delta = b^2 - 4ac = (1)^2 - 4 \times 2 \times (-1) = 1 + 8 = 9 = (3)^2 > 0$$

بما أن
$$0 \prec \Delta$$
 فان هذه الحدودية لها جذرين هما:

: ومنه جدول الأشارة
$$x_1 = \frac{-4}{4} = -1$$
 9 $x_1 = \frac{-1+3}{2 \times 2} = \frac{2}{4} = \frac{1}{2}$

x	$-\infty$	-1	1/	['] 2 ·	+∞
4x2+2x-2	+	þ	- () +	

$$D_f =]-\infty;-1]\cup\left[\frac{1}{2};+\infty\right[$$
 ومنه:

$$\forall x \in]-\infty; -1[\cup] \frac{1}{2}; +\infty$$

$$f'(x) = \left(\sqrt{4x^2 + 2x - 2}\right)' = \frac{\left(4x^2 + 2x - 2\right)'}{2\sqrt{4x^2 + 2x - 2}} = \frac{8x + 2}{2\sqrt{4x^2 + 2x - 2}} = \frac{4x + 1}{\sqrt{4x^2 + 2x - 2}}$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{4x^2 + 2x - 2} (2$$

$$\lim_{x \to -\infty} f(x) = +\infty$$
 ومنه $\lim_{x \to -\infty} 4x^2 + 2x - 2 = \lim_{x \to -\infty} 4x^2 = +\infty$: لدينا

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\sqrt{4x^2 + 2x - 2}}{x} = \lim_{x \to \infty} \frac{\sqrt{x^2 \left(4 + \frac{2x}{x^2} - \frac{2}{x^2}\right)}}{x} (3)$$

$$= \lim_{x \to \infty} \frac{\left|x\right| \sqrt{4 + \frac{2}{x} - \frac{2}{x^2}}}{x}$$

لدينا : $\infty \to -\infty$ ومنه $x \to -\infty$ ومنه

$$= \lim_{x \to \infty} \frac{-x\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}}}{x} = \lim_{x \to \infty} -\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} = -\sqrt{4} = -2 = a$$

$$\lim_{x \to \infty} f(x) + 2x = \lim_{x \to \infty} \sqrt{4x^2 + 2x - 2} + 2x = \lim_{x \to \infty} \frac{\sqrt{4x^2 + 2x - 2} + 2x}{\sqrt{4x^2 + 2x - 2} - 2x}$$

$$= \lim_{x \to \infty} \frac{4x^2 + 2x - 2 - 4x^2}{\left|x\right| \sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} - 2x} = \lim_{x \to \infty} \frac{2x - 2}{-x\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} - 2x} = \lim_{x \to \infty} \frac{2x - 2}{-x\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} - 2x}$$

$$= \lim_{x \to \infty} \frac{x\left(2 - \frac{2}{x}\right)}{-x\left(\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} + 2\right)} = \lim_{x \to \infty} \frac{2 - \frac{2}{x}}{-\left(\sqrt{4 + \frac{2}{x} - \frac{2}{x^2}} + 2\right)} = \frac{2}{4} = \frac{1}{2} = b$$

$$f$$
 مقارب مائل لمنحنی الدالة $y=2x-1$ ومنه $y=ax+b$: مقارب مائل لمنحنی الدالة $y=ax+b$ بجوار $-\infty$