الأستاذ: عثماني نجيب

الثانية باك آداب و علوم إنسانية

 ${f A}$ الفرض المنزلي الأول ℓ

 $\forall n \in \mathbb{N}$ $U_0 = -1$ و $U_{n+1} = \frac{3}{2}U_n - 1$: المعرفة كالتالي المعرفة كالتالي نعتبر المتتالية العددية (u_n) المعرفة كالتالي ين $U_{n+1} = \frac{3}{2}U_n - 1$

 $\forall n \in \mathbb{N} \quad V_n = U_n - 2$: ونعتبر المتنالية العددية $\left(V_n\right)$ المعرفة كالنالي

 v_1 و v_0 و u_2 و u_1 أحسب 1.

الأول $\frac{3}{v_{n+1}}$ و استنتج أن المنتالية $\binom{v_n}{v}$ هندسية أساسها $\frac{3}{v}$ وحدد حدها الأول $\frac{v_{n+1}}{v}$

n بدلالة v بدلالة 3

n بدلاله u_n بدلاله 4

 $\lim_{n\to +\infty} u_n$ و $\lim_{n\to +\infty} v_n$: أحسب النهايات التالية.

 $\lim_{n\to +\infty} \frac{6n^6+8n+7}{n^4+3}$ (3 $\lim_{n\to +\infty} \frac{7n^2+3n+1}{n^5+3}$ (2 $\lim_{n\to +\infty} n^2-5n^3+4$ (1: تمرین2: (7ن) أحسب النهایات التالیة

$$\lim_{n \to +\infty} \frac{4}{\left(\frac{1}{2}\right)^n + 2} (7 \qquad \lim_{n \to +\infty} 2^n - 3^n (6 \qquad \lim_{n \to +\infty} \left(\frac{5}{n} - 1\right) \left(\frac{1}{\sqrt{n}} + 2\right) (5 \qquad \lim_{n \to +\infty} \frac{7n^4 + 2n - 1}{n^4 + 9} (4 + 2n - 1) \left(\frac{1}{\sqrt{n}} + 2\right) (5 + 2n - 1) \left(\frac{1}{\sqrt{n}} + 2\right) (6 + 2n - 1) \left(\frac{1}{\sqrt{n}} + 2\right) (6$$

التمرين 2 : 1ن لكل سؤال

¿2 (5 ¿2 (4 ¿2 (3 ¿ 3(2 ¿ 4 (1

Prof/ATMANI NAJIB - Année Scolaire 2016-2017 Semestre 1

http:// xyzmath.e-monsite.com

الأستاذ: عثماني نجيب

الثانية باك آداب و علوم إنسانية

الفرض المنزلي الأول ا*لدورة 1* В

 $\forall n \in \mathbb{N}$ $U_0 = 10$ و $U_{n+1} = \frac{2}{2}U_n + 1$: المعرفة كالتالي : $U_0 = 10$ و $U_0 = 10$ و $U_0 = 10$

 $\forall n \in \mathbb{N} \quad V_n = U_n - 3$: ونعتبر المتتالية العددية $\left(V_n \right)$ المعرفة كالتالي

 v_1 و v_0 و u_2 و u_1 احسب 1.

2. أحسب $\frac{v_{n+1}}{v}$ و استنتج أن المتتالية (v_n) هندسية أساسها $\frac{2}{v}$ وحدد حدها الأول

n بدلالة v بدلالة 3

n بدلالة u_n بدلالة 4

 $\lim_{n\to+\infty} u_n$ **9** $\lim_{n\to+\infty} v_n$: itilizable limulum 15.

 $\lim_{n \to +\infty} \frac{n^4 + 5n - 4}{n^2 + 2} (3 \lim_{n \to +\infty} \frac{8n^3 + 2n + 10}{n^6 + 0} (2 \lim_{n \to +\infty} 7n^2 - n + 6 (1: مرين 2: (7ن) أحسب النهايات التالية$

$$\lim_{n \to +\infty} \frac{3}{\left(\frac{3}{2}\right)^n + 1} (7 \qquad \lim_{n \to +\infty} 6^n - 2^n (6 \qquad \lim_{n \to +\infty} \left(\frac{2}{n} + 3\right) \left(\frac{7}{\sqrt{n}} + 10\right) (5 \qquad \lim_{n \to +\infty} \frac{3n^5 - 4n - 4}{n^5 + 2} (4n^5 + 3n^5 + 3n^5$$

التمرين 2: 1ن لكل سؤال

التنقيط: التمرين 1 ن2 (5 ن2 (4 ن2 (3 ن 3 (2 ن 4 (1

http://xyzmath.e-monsite.com